Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bội của 3 chứng tỏ ababab chia hết cho 3
mà số chia hết cho 3 phải có tổng các chữ số chia hết cho 3
Tổng các chữ số là :
a + b + a + b + a + b
= 3( a + b )
Vì 3 ( a + b ) chia hết cho 3
=> ababab chia hết cho 3
Ta có:ababab=ab0000+ab00+ab=ab.10000+ab.100+ab=ab.(10000+100+10)=ab.10101
Ta có: 10101 chia hết cho 3 và ab số tự nhiên
ab.10101 chia hết cho 3 hayababab chia hết cho 3
Vậy bài toán đã được chứng minh
Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.< ( Cô bé tháng 1 )
Bài 1:
Ta có: \(\overline{ababab}=10101.\overline{ab}⋮3\)
\(\Rightarrow\overline{ababab}\in B\left(3\right)\left(đpcm\right)\)
Bài 3:
Đặt \(A=\frac{1}{2^2}+...+\frac{1}{2^n}\)
\(\Rightarrow2A=\frac{1}{2}+...+\frac{1}{2^{n-1}}\)
\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{2^n}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^n}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001
Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001
Mà \(\overline{abc}\) là số có 3 chữ số
=> \(\overline{abc}\) không phải số chính phương
b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101
Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101
Mà \(\overline{ab}\) là số có hai chữ số
=> \(ababab\) không phải là số chính phương
c,\(\overline{abc}+\overline{bca}+\overline{cab}\)
= 100a+10b+c+100b+10c+a+100c+10a+b
= 111a+111b+111c
= 111.(a+b+c)
=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111
Bài 1:
\(\overline{ababab}=\overline{ab0000}+\overline{ab00}+\overline{ab}\)
\(=\overline{ab}.10000+\overline{ab}.100+\overline{ab}.1\)
\(=\overline{ab}.\left(10000+100+1\right)\)
\(=\overline{ab}.10101\)
Vì \(10101⋮3\)
Nên \(\overline{ab}.10101⋮3\)
\(\Rightarrow\overline{ababab}\in B\left(3\right)\)
Bài 2:
Gọi số bị chia là a
Số chia là b (b<12 vì số chia lớn hơn số dư)
+) \(a\div b=5\)(dư 12) \(\Rightarrow a=5b+12\)(1)
+) \(a\div\left(b+12\right)=3\)(dư 18) \(\Rightarrow a=3.\left(b+12\right)+18=3b+36+18+=3b+54\)(2)
Từ (1) và (2) \(\Rightarrow5b+12=3b+54\Rightarrow5b-3b=54-12\Rightarrow2b=42\Rightarrow b=21\)
Từ (1) \(\Rightarrow a=5.21+12=117\)
Vậy số bị chia là 117
a)Ta có :
ababab = ab . 10101
Do 10101 chia hết cho 3
=> ab . 10101 chia hết cho 3
hay ababab chia hết cho 3
ababab chia hết cho 3 nên ababab thuộc B ( 3 )
c ) Ta có :
165 + 215
( 24 )5 + 215
= 220 + 215
= 215 . 25 + 215
= 215 . ( 25 + 1 )
= 215 . 33 chia hết cho 33
Vậy 165 + 215 chia hết cho 33
HkI, số h/sgiỏi bằng \(\frac{3}{7}\) số HS còn lại
=>số h/s giỏi =\(\frac{3}{3}+7=\frac{3}{10}\) ﴾số h/s cả lớp﴿
Hk2số HS giỏi bằng 2/3 số HS còn lại
=>số h/s giỏi bằng:\(\frac{2}{3}+2=\frac{2}{5}\)﴾số h/s cả lớp﴿
P/s chỉ 4 h/s giỏi là:
\(\frac{2}{5}-\frac{3}{10}=\frac{1}{10}\)﴾số h/s cả lớp﴿
Số h/s cả lớp là:
\(4:\frac{4}{10}=40\)﴾h/s)
Vậy lớp 6A có 40 học sinh.
P/s: bài này có nhiều cách giải cậu cũng có thể tham khảo trên mạng
Ta có: ababab = ab0000 + ab00 + ab
= ab. 10000 + ab . 100 + ab . 1
= ab . (10000 + 100 + 1)
= ab . 10101=>10101 chia hết cho 3 => ab . 10101 chia hết cho 3
=> ababab là B(3)
a/ \(\overline{ababab}=\overline{10101}.\overline{ab}\) ta có \(\overline{10101}⋮3\Rightarrow\overline{ababab}⋮3\) nên \(\overline{ababab}\) là bội của 3
b/ gọi d là ước chung của tử và mẫu nên
\(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)
\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)
\(\Rightarrow60n+5-60n-4=1⋮d\Rightarrow d=1\)
Tử và mẫu chỉ có ước chung là 1 nên phân số là tối giản
c/
\(S=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
b) Gọi d= ƯCLN(12n+1;30n+2)
=>12n+1chia hết cho d; 30n+2 chia hết cho d
=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d
=> 5(12n+1)-2(30n+2) chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 60n=5-60n-4 chia hết cho d
=>1 chia hết cho d
=> d = 1
=>(12n+1;30n+2) chia hết cho d
=> 12n+1/30n+2 là phân số tối giản
c) có S= 165+215
=(24)5+215
=220+215
=215+220-15+215
=215.220-15+215
=215.(220-15+1)
=215.(25+1)
=215.(32+1)
=215.33
mà 33 chia hết cho 33
=>215.33 chia hết cho 33
=>165+215 chia hết cho 33
=> S chia hết cho 33 (ĐPCM)
Tham khảo:D
ababab = ab0000 + ab00 + ab
= ab . 10000 + ab . 100 + ab . 1
= ab . (10000 + 100 + 1)
= ab . 10101
Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3
Suy ra: ababab là bội của 3
Giải thích các bước giải:
Vì theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a + b + a + b + a + b
mà a + b + a + b + a + b = a . 3 + b . 3
Vậy từ đó suy ra ababab chia hết cho 3.
Tham khảo vui lòng in đậm nhé!