K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

ababab = 10101 x ab \(⋮\)ab

31 tháng 10 2017

Ta có: ababab = ab . 10101 \(⋮\)ab 

 => ababab  \(⋮\)ab

24 tháng 1 2022

Tham khảo:D

ababab = ab0000 + ab00 + ab

= ab . 10000 + ab . 100 + ab . 1

= ab . (10000 + 100 + 1)

= ab . 10101

Ta có: 10101 chia hết cho 3 nên ab . 10101 chia hết cho 3 

Suy ra: ababab là bội của 3 

Giải thích các bước giải:

 Vì theo khái niệm về số chia hết cho 3 ta thấy tổng các chữ số a + b + a + b + a + b

 mà a + b + a + b + a + b = a . 3 + b . 3 

Vậy từ đó suy ra ababab chia hết cho 3.

24 tháng 1 2022

Tham khảo vui lòng in đậm nhé!

13 tháng 5 2017

Bội của 3 chứng tỏ ababab chia hết cho 3

mà số chia hết cho 3 phải có tổng các chữ số chia hết cho 3

Tổng các chữ số là :

 a + b + a + b + a + b 

= 3( a + b )

Vì 3 ( a + b ) chia hết cho 3

=> ababab chia hết cho 3

13 tháng 5 2017

Ta có:ababab=ab0000+ab00+ab=ab.10000+ab.100+ab=ab.(10000+100+10)=ab.10101

Ta có: 10101 chia hết cho 3 và ab số tự nhiên

ab.10101 chia hết cho 3 hayababab chia hết cho 3

Vậy bài toán đã được chứng minh

Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.< ( Cô bé tháng 1 )

18 tháng 8 2017

a,Ta có: \(\overline{abcabc}\) = \(\overline{abc}\).1001

Để \(\overline{abcabc}\) là số chính phương thì \(\overline{abc}\) chỉ có thể là 1001

\(\overline{abc}\) là số có 3 chữ số

=> \(\overline{abc}\) không phải số chính phương

b,Ta có \(\overline{ababab}\) = \(\overline{ab}\).10101

Để \(\overline{ababab}\) là số chính phương thì \(\overline{ab}\) chỉ có thể là 10101

\(\overline{ab}\) là số có hai chữ số

=> \(ababab\) không phải là số chính phương

c,\(\overline{abc}+\overline{bca}+\overline{cab}\)

= 100a+10b+c+100b+10c+a+100c+10a+b

= 111a+111b+111c

= 111.(a+b+c)

=> \(\overline{abc}+\overline{bca}+\overline{cab}\) không phải số chính phương vì a,b,c là các chữ số tự nhiên a+b+c \(\ne\) 111

16 tháng 10 2018

Ta có 

 ab + ba =10a+b+10b+a

              =(10a+a)+(10b+b)

              =11a+11b=11(a+b)

=> ab + ba chia hết cho 11.

16 tháng 10 2018

ta có:

ab+ba=(a.10+b)+(b.10+a)=a.11+b.11

vì 11chia hết cho 11 => (a+b).11 chia hết cho 11

=> ab+ba chia hết cho 11 

         k nha

abcd = ab x 1000 + cd

ab x 999 + ( ab + cd )

Vì ab x 999 Chia hết cho 11

    ab + cd chia hết cho 11

Suy ra abcd chia hết cho 11

Ta có : \(\overline{abcd}=\overline{ab}\cdot100+\overline{cd}=99\cdot\overline{ab}+\overline{ab}+\overline{cd}\left(1\right)\)

Lại có : \(\overline{ab}+\overline{cd}⋮11\left(2\right)\)

\(99⋮11\Rightarrow99\overline{ab}⋮11\left(3\right)\)

Từ (1),(2) và (3) : \(\Rightarrow\overline{abcd}⋮11\)

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!

26 tháng 2 2017

Bài 1:

Ta có: \(\overline{ababab}=10101.\overline{ab}⋮3\)

\(\Rightarrow\overline{ababab}\in B\left(3\right)\left(đpcm\right)\)

Bài 3:

Đặt \(A=\frac{1}{2^2}+...+\frac{1}{2^n}\)

\(\Rightarrow2A=\frac{1}{2}+...+\frac{1}{2^{n-1}}\)

\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{2^n}\)

\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^n}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

14 tháng 3 2017

a27+15a+a6 chia hết cho 3 

=>a27 chia hết cho 3 

   15a chia hết cho 3

     a6 chia hết cho 3

còn lại bạn tự làm!