Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n không chia hết cho 3\(\Rightarrow\)n2 không chia hết cho 3=>n2 chia 3 dư 1 hoặc 2.
-Nếu n2 chia 3 dư 1 =>n2 -1 chia hết cho 3.
-Nếu n2 chia 3 dư 2 =>n2+1 chia hết cho 3.
Vậy n2 -1 và n2+1 không thể đồng thời là hai số nguyên tố vì một trong hai số trên chia hết cho 3(đpcm)
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
Bài giải
Ta có: n2 - 1 và n2 + 1 (n không chia hết cho 3, n > 2, n \(\in\)N gì đó)
Xét n:
Vì n không chia hết cho 3
Suy ra n2 chia 3 dư 1
Xét ba số tự nhiên liên tiếp: n2 - 1; n2; n2 + 1
Vì n2 chia 3 dư 1
Nên n2 - 1 \(⋮\)3
Suy ra n2 - 1 là hợp số
Vậy...
\(n\) lớn hơn 2 và ko chia hết cho 3 nên \(n\) tồn tại dưới 2 dạng là 3k+1 hoặc 3k+2.
Nếu \(n\) có dạng 3k + 2
n2 + 1 = ( 3k + 2 )2 + 1 = 9k2 + 12k + 5
n2 - 1 = 9k2 + 12k + 3 chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Nếu n có dạng 3k + 1
n2 + 1= ( 3k + 1 )2 + 1 = 9k2 + 6k + 2
n2 - 1= ( 3k + 1 )2 - 1 = 9k2+ 6k chia hết cho 3
=> Ko thể đồng thời là số nguyên tố
Vậy với n thuộc N , n > 2 và ko chia hết cho 3 thì n2 + 1 và n2- 1 ko thể đồng thời là số nguyên tố.
Chúc học tốt!!!
n2+n+1=n.(n+1)+1
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó chia hết cho 2.Khi nó cộng với 1 thì sẽ không chia hết cho 2
do n.(n+1) là tích hai số tự nhiên liên tiếp nên nó có chữ số tận cùng là 0,2,6 và khi cộng với 1 thì có đuôi là 1,3,7 và không chia hết cho 5
vậy số đó không chia hết cho 2 và 5