K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 11 2018

\(4\left(m+n\right)^2-mn⋮15^2\Rightarrow4\left(4\left(m+n\right)^2-mn\right)⋮15^2\)

\(\Rightarrow16\left(m+n\right)^2-4mn⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15^2\Rightarrow15\left(m+n\right)^2+\left(m-n\right)^2⋮15\)

\(15\left(m+n\right)^2⋮15\Rightarrow\left(m-n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m-n\right)^2⋮3\\\left(m-n\right)^2⋮5\end{matrix}\right.\)

Do 3 và 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m-n⋮3\\m-n⋮5\end{matrix}\right.\) \(\Rightarrow m-n⋮15\Rightarrow\left(m-n\right)^2⋮15^2\)

\(\Rightarrow15\left(m+n\right)^2⋮15^2\Rightarrow\left(m+n\right)^2⋮15\Rightarrow\left\{{}\begin{matrix}\left(m+n\right)^2⋮3\\\left(m+n\right)^2⋮5\end{matrix}\right.\)

Mà 3; 5 là số nguyên tố \(\Rightarrow\left\{{}\begin{matrix}m+n⋮3\\m+n⋮5\end{matrix}\right.\) \(\Rightarrow m+n⋮15\Rightarrow\left(m+n\right)^2⋮15^2\)

Áp dụng kết quả này vào điều kiện ban đầu: \(4\left(m+n\right)^2-mn⋮15^2\) , mà ta \(\left(m+n\right)^2⋮15^2\) \(\Rightarrow mn⋮15^2\)

19 tháng 11 2018

Akai Haruma

Cô giúp em với ạ!!!!

3 tháng 11 2016

a/ Để hàm số này là hàm bậc nhất thì

\(\hept{\begin{cases}\left(3n-1\right)\left(2m+3\right)=0\\4m+3\ne0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}n=\frac{1}{3}\\m=\frac{-3}{2}\end{cases}}\)

Các câu còn lại làm tương tự nhé bạn

3 tháng 11 2016

NHAMMATTAOCUNGLAMDUOC

27 tháng 1 2020

Vũ Minh Tuấn, Băng Băng 2k6, Nguyễn Thành Trương, buithianhtho, Akai Haruma, No choice teen, Bùi Thị Vân,

HISINOMA KINIMADO, Nguyễn Thanh Hằng, Nguyễn Ngô Minh Trí, @Nguyễn Việt Lâm, @Nguyễn Thị Ngọc Thơ

mn giúp em với ạ! Cảm ơn nhiều !

28 tháng 9 2019

có: x+y+z=2=>(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=4

mà x^2+y^2+z^2=2 =>2(xy+yz+xz)=2

=>xy+yz+xz=1

xét:1+y^2=xy+yz+xz+y^2=(x+y)(z+y)

tương tự :1+z^2=xy+yz+xz+z^2=(x+z)(y+z)

1+x^2=xy+yz+xz+x^2=(x+z)(x+y)

thay vào M ta có :M=\(\sqrt{\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=\sqrt{\left(y+z\right)^2}\)=/y+z/

Mà x,y,z,\(\in\)Q=>đpcm

NV
5 tháng 11 2019

\(P=mn\left[\left(mn+1\right)^2-\left(m+n\right)^2\right]\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Ta có \(\left\{{}\begin{matrix}\left(m-1\right)m\left(m+1\right)\\\left(n-1\right)n\left(n+1\right)\end{matrix}\right.\) đều là tích của 3 số nguyên liên tiếp nên đều chia hết cho 6

\(\Rightarrow P⋮36\)

5 tháng 11 2019

thank u

25 tháng 5 2017

Ta có: \(\left(x-1\right)^3=x^3-3x^2+3x-1\)

\(=x\left(x^2-3x+3\right)-1=x\left(x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}x-1\ge\dfrac{3}{4}x-1\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\left(y-1\right)^3\ge\dfrac{3}{4}y-1;\left(z-1\right)^3\ge\dfrac{3}{4}z-1\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{3}{4}\left(x+y+z\right)-3=\dfrac{3}{4}\cdot3-3=-\dfrac{3}{4}\)