Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì s,y,z,t là stn khác 0 \(\Rightarrow\frac{x}{x+y+z}< \frac{x}{x+y};\frac{y}{x+y+t}< \frac{y}{x+y}\Rightarrow\frac{x}{x+y+z}+\frac{y}{x+y+t}< \frac{x}{x+y}+\frac{y}{x+y}=1\)
\(\frac{z}{y+z+t}< \frac{z}{z+t};\frac{t}{x+z+t}< \frac{t}{z+t}\Rightarrow\frac{z}{y+z+t}+\frac{t}{x+y+t}< \frac{z}{z+t}+\frac{t}{z+t}=1\)
\(\Rightarrow M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< 1+1=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 1025\Rightarrow M^{10}< 1025\)
biến đổi ntn nè x/x+y+z+t + x/x+y+z+t + z/y+z+t + t/x+t+z bạn lm tiếp đi dễ mà dài
Có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+t+z}>\frac{t}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=> \(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=> \(M>1\)(1)
Ta có: \(\frac{a}{b}< \frac{a+m}{b+m};\forall m\inℕ^∗\)
=> \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+t+z}< \frac{t+y}{x+y+z+t}\)
=> \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+t+z}>\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=> \(M< \frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
=> \(M< 2\)(2)
Từ (1) và (2) => \(1< M< 2\)
=> \(M\notin N\)
=> M không có giá trị là số tự nhiên
Ta có:\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t};\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t};\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t};\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Khi đó:\(M< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(=2\)
\(\Rightarrow M^{10}< 2^{10}=1024< 2020\)
Vậy ta có điều fải chứng minh :D
Bạn ghi sai đề nhé chữa thành :
M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)
Giải
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=> M=\(\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}\)>\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
=> M>1 (1)
Ta lại có: \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{x}{y+z+t}< \frac{x+y}{x+y+z+t}\)
\(\frac{z}{z+t+x}< \frac{z+y}{x+y+z+t}\)
\(\frac{t}{t+x+y}< \frac{t+z}{x+y+z+t}\)
=> M=\(\frac{x}{x+y+z}=\frac{y}{y+z+t}=\frac{z}{z+t+x}=\frac{t}{t+x+y}\)<
\(\frac{x+t}{x+y+z+t}+\frac{y+x}{x+y+z+t}+\frac{z+y}{x+y+z+t}=\frac{t+z}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)=> M<2 (2)
Từ (1) và (2) => 1<M<2
=> M không phải là số tự nhiên
Ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+z}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{z+t+x}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}< \frac{t}{z+t+x}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\) Hay M ko là số tự nhiên
Cm 1< M<2 thì sẽ không có giá trị là số tự nhiên..
\(\frac{x}{x+y+z+t}\)< \(\frac{x}{x+y+z}\)< \(\frac{x}{x+y}\)
Tương đương mấy cái kia cũng vậy ^_^
Sau đó cộng từng vế của BĐT ra kết quả
\(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< 2=\frac{x+t}{x+y+z+t}+thieu,so,nao,o,mau,thi,them,vao=\frac{2x+2y+2z+2t}{x+y+z+t}vi,M< 2nen,M,2015\)