Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết , ta có :
( x + y + z)( xy + yz + xz ) = xyz
x( xy + yz + xz) + y( xy + yz + xz ) + z( xy + yz + xz ) - xyz = 0
x2y + xyz + x2z + xy2 + y2z + xyz + xyz + yz2 + xz2 - xyz = 0
x2y + x2z + xy2 + y2z + yz2 + xz2 + 2xyz = 0
xy( x + y) + xz( x + z) + yz( y + z) + 2xyz = 0
xy( x + y + z) + xz( x + y + z) + yz( y + z) = 0
( x + y + z)x( y + z) + yz( y + z) = 0
( y + z)( x2 + xy + xz + yz ) = 0
( y + z)[ x( x + y ) + z( x + y) ] = 0
( y + z)( y + x )( x + z) = 0
Suy ra :
* x + y = 0 --> x = - y . Thay vào đẳng thức cần chứng minh , ta có
( - y)2013 + y2013 + z2013 = ( - y + y + z)2013
Khi đó , ta có : z2013 = z2013 , luôn đúng
* Tương tự , thử với các trường hợp khác : y = - z ; x = - z
Vậy , đảng thức được chứng mình
Ta có (x+y+z)(xy+yz+xz)=xyz
<=>\((x+y+z)(\frac{xyz}{z}+\frac{xyz}{y}+\frac{xyz}{x})=xyz \)
<=>(x+y+z)(\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=1 \)
<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z} \)
<=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0 \)
<=>\(\frac{x+y}{xy}+\frac{x+y}{z(x+y+z)} \)
<=>\((x+y)(\frac{1}{xy}+\frac{1}{z(x+y+z)}) \)
<=>\((x+y)(\frac{xz+yz+z^2+xy}{xyz(x+y+z)} \)
<=>\((x+y)(y+z)(x+z)(\frac{1}{xyz(x+y+z)} )\)
=>x=-y
hoặc y=-z
hoặc x=-z
Thay vào Pt => đpcm
Do \(x+y+z=0;xy+yz+xz=0\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2=0\)\(\Rightarrow x=y=z=0\)
\(\Rightarrow S=\left(x-1\right)^{2011}+\left(y-1\right)^{2012}+\left(z+1\right)^{2013}=\left(-1\right)^{2011}+\left(-1\right)^{2012}+1^{2013}=1\)
Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)
Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Vậy ta có đpcm
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)
\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)
\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)
\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)
\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)
\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)
\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)
\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)
Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)
ta có (x+y+z).(xy+yz+zx) - xyz = 0
<=> (x+y).(y+z).(z+x) = 0
=> vế trái phải có 1 nhân tử bằng 0 ,chẳng hạn x + y = 0 => x = -y
=> x^2013 = -y^2013
=> x^2013 + y^2013 + z^2013 = - y^2013 + y^2013 + z^2013 + = z^2013 = ( x +y + z )^2013
Bạn kia làm đúng rồi