K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+\sqrt{x^2+1}}=y+\sqrt{y^2+1}\\\frac{1}{y+\sqrt{y^2+1}}=x+\sqrt{x^2+1}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+1}=y+\sqrt{y^2+1}\left(1\right)\\-y+\sqrt{y^2+1}=x+\sqrt{x^2+1}\left(2\right)\end{cases}}\)

Cộng vế với vế của (1) và (2) ta có:

\(-2x-2y=0\Leftrightarrow-2\left(x+y\right)=0\Leftrightarrow x+y=0\)

\(\Rightarrow P=x^{2019}+y^{2019}=0\)

4 tháng 8 2019

Nhân liên hợp cả 2 vế

P=1

5 tháng 2 2020

Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)

\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)

\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)

\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)

\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)

hay \(A=\sqrt{2018}\)

4 tháng 1 2019

Ta có:

\(VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}\)

\(=xy=VP\)

Dấu =  xảy ra khi \(x=y=18\)

\(\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0\)

20 tháng 9 2019

Ta có:

VT=\sqrt{9x\left(xy-9x\right)}+\sqrt{9y\left(xy-9y\right)}\le\frac{9x+xy-9x}{2}+\frac{9y+xy-9y}{2}VT=9x(xy−9x)​+9y(xy−9y)​≤29x+xy−9x​+29y+xy−9y

=xy=VP=xy=VP

Dấu =  xảy ra khi x=y=18x=y=18

\Rightarrow S=\left(18-17\right)^{2018}+\left(18-19\right)^{2019}=1-1=0⇒S=(18−17)2018+(18−19)2019=1−1=0

28 tháng 4 2019

Ta xét \(\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)=x^2-\left(x^2+1\right)=-1.\)

Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x-\sqrt{x^2+1}=-\left(y+\sqrt{y^2+1}\right)\)

\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}.\)(1)

Xét \(\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y^2-\left(y^2+1\right)=-1\)

Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow y-\sqrt{y^2+1}=-\left(x+\sqrt{x^2+1}\right).\)

\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\)(2)

Cộng 2 vế của (1) và (2) Ta được

\(2\left(x+y\right)=0\Leftrightarrow x=-y\)Thế vào A

\(A=x^{2019}+y^{2019}=\left(-y\right)^{2019}+y^{2019}=0\)

\(A=\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}+\frac{\left(x+z\right)\sqrt{\left(x+y\right)\left(y+z\right)}}{y}+\frac{\left(x+y\right)\sqrt{\left(y+z\right)\left(x+z\right)}}{z}.\)

Áp dụng bất đẳng thức Bunhiacopski ta có

\(\left(x+y\right)\left(x+z\right)\ge\left(x+\sqrt{yz}\right)^2\)

Tương tự \(\left(x+y\right)\left(y+z\right)\ge\left(y+\sqrt{xz}\right)^2\)

                 \(\left(y+z\right)\left(x+z\right)\ge\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow A\ge\frac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}+\frac{\left(x+z\right)\left(y+\sqrt{xz}\right)}{y}+\frac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\)

hay \(A\ge2\left(x+y+z\right)+\frac{\sqrt{yz}\left(y+z\right)}{x}+\frac{\left(x+z\right)\sqrt{xz}}{y}+\frac{\left(x+y\right)\sqrt{xy}}{z}\)

\(\Leftrightarrow A\ge2\left(x+y+z\right)+\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Đặt \(M=\frac{yz\sqrt{yz}\left(y+z\right)}{xyz}+\frac{xz\sqrt{xz}\left(x+z\right)}{xyz}+\frac{xy\sqrt{xy}\left(x+y\right)}{xyz}\)

Ta có \(\left(x,y,z\right)\rightarrow\left(a^2,b^2,c^2\right)\)

Khi đó \(M=\frac{a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)}{a^2b^2c^2}\)

ÁP DỤNG BĐT AM-GM ta có

\(a^5b^3+a^3b^5\ge2\sqrt{a^8b^8}=2a^4b^4\)

\(b^5c^3+b^3c^5\ge2\sqrt{b^8c^8}=2b^4c^4\)

\(a^5c^3+a^3c^5\ge2\sqrt{a^8c^8}=2a^4c^4\)

Cộng từng vế ta được 

\(a^3b^3\left(a^2+b^2\right)+b^3c^3\left(b^2+c^2\right)+c^3a^3\left(a^2+c^2\right)\ge2\left(a^4b^4+b^4c^4+c^4a^4\right)\)

              \(\ge2a^2b^2c^2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow M\ge2\left(a^2+b^2+c^2\right)=2\left(x+y+z\right)\)

\(\Rightarrow A\ge4\left(x+y+z\right)=4\sqrt{2019}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{\sqrt{2019}}{3}\)

28 tháng 8 2020

Hello ,bạn nhé