Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2
= ( a2 + 2ab +b2 ) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )
= ( a + b )2 + ( a + c )2 + ( b + c )2
1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c2 )
= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2
= 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )
= (a-b)2 + (a-c)2 + (b-c)2
ta có \(Q=\frac{a^2+2a+1}{2a^2+\left(1-a\right)^2}+...\)
\(=\frac{a^2+2a+1}{3a^2-2a+1}+...=\frac{1}{3}+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+...\)
\(=1+\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}+\frac{\frac{8}{3}b+\frac{2}{3}}{3b^2-2b+1}+\frac{\frac{8}{3}c+\frac{2}{3}}{3c^2-2c+1}\)
mà \(3a^2-2a+1=3\left(a-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)
=>\(\frac{\frac{8}{3}a+\frac{2}{3}}{3a^2-2a+1}\le\frac{\frac{8}{3}a+\frac{2}{3}}{\frac{2}{3}}=\frac{3}{2}\left(\frac{8}{3}a+\frac{2}{3}\right)=4a+1\)
tương tự mấy cái kia rồi + vào, ta có
\(Q\le1+4\left(a+b+c\right)+3=8\)
dấu = xảy ra <=>a=b=c=1/3
^_^
câu a (a+b+c)2 +(a+b-c)2 - 4c2= (a+b+c)2+(a+b-c+2c).(a+b-c-2c) =(a+b+c)2 +(a+b+c).(a+b-3c)=(a+b+c). (a+b+c+a+b-3c)=(a+b+c).2.(a+b-c)
câu b 4a2b2-(a2+b2-c2) = (2ab-a2-b2+c2).(2ab+a2+b2-c2)
= (c2-(a-b)2).((a+b)2-c2)
= (c-a+b).(c+a-b).(a+b-c).(a+b+c)
câu c a4+b4+c4-2a2b2+2b2c2-2a2c2-4b2c2=(a2-b2-c2)2-4b2c2=(a2-b2-c2-2bc).(a2-b2-c2+2bc)=(a2-(b+c)2).(a2-(b-c)2)=(a-b-c).(a+b+c).(a-b+c).(a+b-c)
câu d dùng pp xét giá trị riêng thay b =c (bạn tự giải ) thì đa thức này nếu coi là đa thức biến b thì đa thức A chia hết cho b-c
a,b,c bình đẳng => A chia hết cho c-a , a-b
=>A= k(a-b)(b-c)(c-a)
thay thử một bộ a,b,c bất kì => k=? (mình đang vội )
thay k tính đc vàoA= k(a-b)(b-c)(c-a)
a) Ta có: \(a^2-1\le0;b^2-1\le0;c^2-1\le0\)
\(\Rightarrow\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\le0\)
\(a^2+b^2+c^2\le1+a^2b^2+b^2c^2+c^2a^2-a^2b^2c^2\le1+a^2b^2+b^2c^2+c^2a^2\) ( vì \(abc\ge0\) )
Có \(b-1\le0\Rightarrow a^2b\sqrt{b}\left(b-1\right)\le0\Rightarrow a^2b^2\le a^2b\sqrt{b}\)
Tương tự: \(\hept{\begin{cases}b^2c^2\le b^2c\sqrt{c}\\c^2a^2\le c^2a\sqrt{a}\end{cases}\Rightarrow dpcm}\)
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Đặt \(\left\{{}\begin{matrix}a-b=x\\b-c=y\\a-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)
Ta có:
\(x^2+y^2+z^2=\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xz+2yz-2xy=0\)
\(\Leftrightarrow z^2+2xz+2yz+\left(x-y\right)^2=0\)
Vì \(\Rightarrow\left\{{}\begin{matrix}z\ge x\ge0\\z\ge y\ge0\end{matrix}\right.\)
\(\Rightarrow z^2+2xz+2yz+\left(x-y\right)^2\ge0\)
Dấu = xảy ra khi \(x=y=z=0\)
Hay \(a=b=c\)
\(VT=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4ab-4bc-4ca\)
\(VP=\left[\left(a+b\right)-2c\right]^2+\left[\left(b+c\right)-2a\right]^2+\left[\left(c+a\right)-2b\right]^2\)
\(=\left(a+b\right)^2-4\left(a+b\right)c+4c^2+\left(b+c\right)^2-4\left(b+c\right)a+4a^2+\left(a+c\right)^2-4\left(a+c\right)b+4b^2\)
\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)
Nhìn vào thấy 2 vế có \(\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\) rút gọn luôn thì được
\(-4ab-4bc-4ca=-4\left(a+b\right)c+4c^2-4\left(b+c\right)a+4a^2-4\left(a+c\right)b+4b^2\)
\(\Rightarrow ab-\left(a+b\right)c+c^2+bc-\left(b+c\right)a+a^2+ac-\left(a+c\right)c+b^2=0\)
\(\Rightarrow ab-ac-bc+c^2+bc-ab-ac+a^2+ac-ab-bc+b^2=0\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Rightarrow a=b=c\)