K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Liên hợp ta thấy:

\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)

\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)

Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)

------------------------

Áp dụng vào bài toán:

\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)

\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)

Và:

\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)

\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)

Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)

12 tháng 6 2018

C=\(\dfrac{x-x^3}{x^2+1}\left(\dfrac{1}{1+2x+x^2}+\dfrac{1}{1-x^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x^2\right)}{x^2+1}\left(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1-x\right)\left(1+x\right)}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right)}{x^2+1}\left(\dfrac{1-x+1+x}{\left(1-x\right)\left(1+x\right)^2}\right)+\dfrac{1}{1+x}\)

\(=\dfrac{x\left(1-x\right)\left(1+x\right).2}{\left(x^2+1\right)\left(1-x\right)\left(1+x^2\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x}{\left(x^2+1\right)\left(1+x\right)}+\dfrac{1}{1+x}\)

\(=\dfrac{2x+\left(x^2+1\right)}{\left(x^2+1\right)\left(1+x\right)}\)

\(=\dfrac{2x+x^2+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x^2+1\right)\left(x +1\right)}\)

\(=\dfrac{x+1}{x^2+1}\)

NV
14 tháng 6 2020

Ủa còn m;n là số gì bạn?

Bất kì là BĐT này ko đúng

15 tháng 6 2020

Đây là đáp án ạ, nhưng em cần chứng minh bổ đề ạ =((

18 tháng 11 2022

Để đây là hàm số bậc nhất và nghịch biến thì

\(\left\{{}\begin{matrix}m^2-4=0\\\left(n-5m\right)\left(2m+n\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\\left(5m-n\right)\left(2m+n\right)>0\end{matrix}\right.\)

TH1: m=2

=>(10-n)(4+n)>0

=>(n-10)(n+4)<0

=>-4<n<10

TH2: m=-2

=>(-10-n)(4+n)>0

=>(n+10)(n+4)<0

=>-10<n<-4