K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Điều kiện \(x,y,z\ge\frac{1}{4}\)

Cộng các phương trình trong hệ được : 

\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)

\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Từ đó thay vào yêu cầu đề bài để tính.

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

26 tháng 6 2020

Ta có \(\sqrt{\left(y-1\right)\left(x-3\right)}\le\frac{x-1+3-y}{2}=1+\frac{x}{2}-\frac{y}{2}\)

\(\sqrt{\left(y-1\right)\left(3-x\right)}\le\frac{y-1+3-x}{2}=1-\frac{x}{2}+\frac{y}{2}\)

Nên \(2=\sqrt{\left(x-1\right)\left(3-y\right)}+\sqrt{\left(y-1\right)\left(3-x\right)}\le1+\frac{x}{2}-\frac{y}{2}+1-\frac{x}{2}+\frac{y}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=3-y\\y-1=3-x\end{cases}\Leftrightarrow x+y=4}\)

\(\Rightarrow x^2+y^2-4x-4y+7=0\Leftrightarrow\left(x+y\right)^2-2xy-4\left(x+y\right)+7=0\)

\(\Leftrightarrow xy=\frac{7}{2}\)

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

21 tháng 1 2019

\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)

\(\Rightarrow3y-\left|y-2\right|=2\)(1)

*Nếu y > 2 thì 

\(\left(1\right)\Leftrightarrow3y-y+2=2\)

        \(\Leftrightarrow y=0\)(Loại do ko tm KĐX)

*Nếu y < 2 thì

\(\left(1\right)\Leftrightarrow3y-2+y=2\)

\(\Leftrightarrow y=1\)(Tm KĐX)

Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)

                                    \(\Leftrightarrow x=1\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)

21 tháng 1 2019

\(A,ĐKXĐ:x\left(y+1\right)>0\)

\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)

Giải (2) 

Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)

Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)

Thế x = y + 1 vảo pt (1) được

\(y+1+y=5\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2+1=3\)

Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2