Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^3+8}=\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\le\frac{x^2-x+6}{2}\)
=>\(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)
=>A\(\ge\frac{2\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)
mà \(\left(x+y+z\right)^2\ge3xy+3yz+3zx=9\)
=>\(x+y+z\ge3\)
Xét TS-MS= 2\(4\left(xy+yz+zx\right)+x+y+z-18\ge12+6-18=0\)
=>TS/MS \(\ge1\)
=>A\(\ge1\)
Dấu = khi x=y=z=1
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^
Ta có: \(x+\frac{4}{x}+\frac{2}{x}\ge2\sqrt{x.\frac{4}{x}}+\frac{2}{x}\)\(=4+\frac{2}{x}\)( áp dụng bất dẳng thức cosi cho x và 4/x)
\(y+\frac{4}{y}+\frac{2}{y}\ge2\sqrt{y.\frac{4}{y}}+\frac{2}{y}=4+\frac{2}{y}\)
Cộng vế với vế,ta được: \(M\ge8+\frac{2}{x}+\frac{2}{y}=8+\frac{2x+2y}{xy}\)
\(\Rightarrow M\ge8+\frac{2\left(x+y\right)}{\frac{\left(x+y\right)^2}{4}}\)(*) \(\Rightarrow M\ge8+\frac{8}{x+y}\)\(\ge8+\frac{8}{4}=10\)( do \(x+y\le4\)nên \(\frac{8}{x+y}\ge\frac{8}{4}\))
Dấu bằng xảy ra khi và chỉ khi \(a=b=2\)
Vậy \(Mmin=10\Leftrightarrow a=b=2\)
ps:(*): do \(xy\le\frac{\left(x+y\right)^2}{4}\)nên khi nghịch đảo thì \(\frac{2}{xy}\le\frac{2}{\frac{\left(x+y\right)^2}{4}}\), từ đó nhân x+y vào hai vế