K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{y}{x}+\frac{x}{z}+\frac{z}{y}\)

\(\Leftrightarrow\frac{zx^2+xy^2+yz^2}{xyz}=\frac{y^2z+x^2y+z^2x}{xyz}\)

\(\Rightarrow zx^2+xy^2+yz^2=y^2z+x^2y+z^2x\)

\(\Leftrightarrow zx^2+xy^2+yz^2-y^2z-x^2y-z^2x=0\)

\(\Leftrightarrow\left(zx^2-z^2x\right)+\left(xy^2-y^2z\right)-\left(x^2y-yz^2\right)=0\)

\(\Leftrightarrow zx\left(x-z\right)+y^2\left(x-z\right)-y\left(x-z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left(zx+y^2-xy-yz\right)=0\)

\(\Leftrightarrow\left(x-z\right)\left[z\left(x-y\right)-y\left(x-y\right)\right]=0\)

\(\Leftrightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)

=> x - y = 0 hoặc y - z = 0 hoặc z - x = 0

=> x = y hoặc y = z hoặc z = x

Vậy luôn tồn tại 2 số trong 3 số x,y,z bằng nhau

=> đpcm 

22 tháng 1 2017

H​d lấy hai cái nhân với nhau VP=1 ; VT=bt rút gọn=>đpcm

13 tháng 5 2018

        \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)   (do x+y+z = 2015)

\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

đến đây tự lm nốt nha

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$x+y+z=2014; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2014}$

$\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}$

$\Rightarrow (\frac{1}{x}+\frac{1}{y})+(\frac{1}{z}-\frac{1}{x+y+z})=0$

$\Rightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0$

$\Rightarrow (x+y)[\frac{1}{xy}+\frac{1}{z(x+y+z)}]=0$

$\Rightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0$

$\Rightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0$

$\Rightarrow (x+y)(z+x)(z+y)=0$

$\Rightarrow x+y=0$ hoặc $x+z=0$ hoặc $z+y=0$

$\Rightarrow x=-y$ hoặc $y=-z$ hoặc $z=-x$

Vậy trong 3 số $x,y,z$ tồn tại hai số đối nhau.

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0 

10 tháng 2 2019

đặt \(\frac{x-y}{z}=a;\frac{y-z}{x}=b;\frac{z-x}{y}=c\)

\(\Rightarrow\)\(\frac{z}{x-y}=\frac{1}{a};\frac{x}{y-z}=\frac{1}{b};\frac{y}{z-x}=\frac{1}{c}\)

Ta có : \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(A=1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+1+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+1=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Ta có :  \(\frac{b+c}{a}=\left(b+c\right)\frac{1}{a}=\left(\frac{y-z}{x}+\frac{z-x}{y}\right)\frac{z}{x-y}=\frac{y^2-yz+xz-x^2}{xy}.\frac{z}{x-y}=\frac{\left(y-x\right)\left(x+y-z\right)}{xy}.\frac{z}{x-y}=\frac{\left(z-x-y\right)z}{xy}=\frac{2z^2}{xy}\)vì x + y + z = 0 \(\Rightarrow\)z = -x - y

Tương tự : \(\frac{a+c}{b}=\frac{2x^2}{yz}\)\(\frac{a+b}{c}=\frac{2y^2}{xz}\)

\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{2z^2}{xy}+\frac{2x^2}{yz}+\frac{2y^2}{xz}=\frac{2\left(x^3+y^3+z^3\right)}{xyz}=\frac{2.3xyz}{xyz}=6\)( vì x + y + z = 0 \(\Rightarrow\)x3 + y3 + z3 = 3xyz )

Vậy A = 3 + 6 = 9