Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)
Tự làm với 2 phân thức còn lại, ta có:
\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)
\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)
Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
Câu 1, Quy đồng mẫu của 2 về lấy MTC là (x-y)(y-z)(z-x).
Câu 2, Chỉ có thể xảy ra khi a+b+c=x+y+z=x/a+y/b+z/c=0
Ta có: \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-x-z\\z=-x-y\end{matrix}\right.\)
\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
\(A=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}\)
\(A=\frac{\left(y+x\right)\left(z+y\right)\left(x+z\right)}{\left(-x-z\right)\left(-x-y\right)\left(-y-z\right)}\)
\(A=-1\)
-cách này khá dài dòng _._ (ko nghĩ đc cách ngắn hơn >: )
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow\hept{\begin{cases}-x.\left(y+z\right)=yz\\-y.\left(x+z\right)=xz\\-z.\left(x+y\right)=xy\end{cases}}\)
thay vào biểu thức P, ta có:
\(P=\left[\frac{-z.\left(y+x\right)}{z^2}+\frac{-x.\left(y+z\right)}{x^2}+\frac{-y.\left(x+z\right)}{y^2}-2\right]^{2013}\)
\(P=\left[\frac{-\left(y+x\right)}{z}+\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}-2\right]^{2013}\)
\(P=\left(\frac{-x^2y-xy^2-zy^2-yz^2-zx^2-xz^2}{xyz}-\frac{2xyz}{xyz}\right)^{2013}\)
\(P=\left[\left(\frac{-x^2y-zx^2}{xyz}\right)+\left(\frac{-xy^2-zy^2}{xyz}\right)+\left(\frac{-z^2y-xz^2}{xyz}\right)\right]\)
\(\text{Ta có: }-x^2y-zx^2=-x^2.\left(y+z\right),\text{mà }-x.\left(y+z\right)=yz\Rightarrow-x^2.\left(y+z\right)=xyz\)
tương tự: \(-xy^2-zy^2=xyz\text{ và }-z^2y-z^2x=xyz\)
\(\Rightarrow P=\left(\frac{3xyz-2xyz}{xyz}\right)^{2013}=1^{2013}=1\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\Rightarrow x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\) (cách cm Câu hỏi của Arthur Conan Doyle - Toán lớp 8 - Học toán với OnlineMath)
Vậy\(P=\left(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}-2\right)^{2013}=\left(\frac{x^3y^3+y^3z^3+z^3x^3}{x^2y^2z^2}-2\right)^{2013}=\left(3-2\right)^{2013}=1\)
Từ \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\Rightarrow\frac{x}{y-z}=-\frac{y}{z-x}-\frac{z}{x-y}\)
\(\Rightarrow\frac{x}{y-z}=\frac{y}{x-z}+\frac{z}{y-x}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y\left(y-x\right)+z\left(x-z\right)}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{y-z}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)}\)
\(\Leftrightarrow\frac{x}{\left(y-z\right)^2}=\frac{y^2-xy+zx-z^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
C/m tương tự đc \(\frac{y}{\left(z-x\right)^2}=\frac{z^2-yz+xy-x^2}{\left(x-z\right)\left(y-z\right)\left(y-z\right)}\)
\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-xz+zy-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}\)
Khi đó \(Q=\frac{y^2-xy+xz-z^2+z^2-yz+xy-x^2+x^2-xz+yz-y^2}{\left(x-z\right)\left(y-x\right)\left(y-z\right)}=0\)
Vậy Q=0