Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}=a\\z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\end{cases}}\)
\(\Rightarrow x^4=\frac{y+1}{y-1}\)
Thế vô z được
\(z=\frac{\left(\frac{y+1}{y-1}\right)^2+1}{\left(\frac{y+1}{y-1}\right)-1}=\frac{y^2+1}{2y}\)
Giờ thì thế \(y=\sqrt{2}+\sqrt{3}\)vô đi
Xét BĐT sau với a,b >0 : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}=2\) \(\). Dấu "=" xảy ra khi a=b
Ta có : \(x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
= \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\) (1)
Áp dụng BĐT vừa c.m , ta suy ra :
\(\hept{\begin{cases}x^2+\frac{1}{x^2}\ge2\\y^2+\frac{1}{y^2}\ge2\\z^2+\frac{1}{z^2}\ge2\end{cases}}\) . Dấu "=" xảy ra khi x=y=z=1 (2)
Từ (1) và (2) => \(\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\)\(\ge2+1+2=6\)
Dấu "=" xảy ra khi x=y=z=1
Thay vào B , ta được :
B = 2+3+1 =6
\(P\left(k\right)+P\left(1-k\right)=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{2\left(1-k\right)+1}}{2^{2\left(1-k\right)}-2}=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^{3-2k}}{2^{2-2k}-2}\)
\(=\frac{2^{2k+1}}{2^{2k}-2}+\frac{2^2}{2-2^{2k}}=\frac{2^{2k+1}}{2^{2k}-2}-\frac{4}{2^{2k}-2}=\frac{2\left(2^{2k}-2\right)}{2^{2k}-2}=2\) (đpcm)
Áp dụng cho câu b:
\(A=2009+P\left(\frac{1}{2009}\right)+P\left(\frac{2008}{2009}\right)+P\left(\frac{2}{2009}\right)+P\left(\frac{2007}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(\frac{1005}{2009}\right)\)
\(=2009+P\left(\frac{1}{2009}\right)+P\left(1-\frac{1}{2009}\right)+...+P\left(\frac{1004}{2009}\right)+P\left(1-\frac{1004}{2009}\right)\)
\(=2009+2+2+...+2\) (có 1004 số 2)
\(=2009+2.1004=4017\)
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Ta có : \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}\); \(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\)
\(y+\frac{1}{y}=\frac{x^4+1}{x^4-1}+\frac{x^4-1}{x^4+1}=\frac{\left(x^4+1\right)^2+\left(x^4-1\right)^2}{x^8-1}=\frac{2\left(x^8+1\right)}{x^8-1}=2z\)
\(\Rightarrow z=\frac{y+\frac{1}{y}}{2}=\frac{y^2+1}{2y}\)
P/s: lần sau đăng hẳn câu hỏi lên đừng có kiểu đăng như thế này, không ai muốn làm đâu
Bài này sai ngay từ đầu rồi-.-
Bài làm:
Ta có: \(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2\cdot x\cdot\frac{1}{x}=7\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x+\frac{1}{x}=3\left(x>0\right)\)
Bây giờ thì dùng tam giác Pascal mà khai triển ra thôi
\(\left(x+\frac{1}{x}\right)^5=x^5+5x^4\cdot\frac{1}{x}+10x^3\cdot\frac{1}{x^2}+10x^2\cdot\frac{1}{x^3}+5x\cdot\frac{1}{x^4}+\frac{1}{x^5}\)
\(=x^5+5x^3+10x+\frac{10}{x}+\frac{5}{x^3}+\frac{1}{x^5}=\left(x^5+\frac{1}{x^5}\right)+5\left(x^3+\frac{1}{x^3}\right)+10\left(x+\frac{1}{x}\right)\)
\(\Rightarrow x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(x^3+\frac{1}{x^3}\right)-10\left(x+\frac{1}{x}\right)\)
\(=3^5-5\left(x+\frac{1}{x}\right)\left(x^2-x\cdot\frac{1}{x}+\frac{1}{x^2}\right)-10\cdot3\)
\(=243-5\cdot3\cdot\left(7-1\right)-30=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)
Giải PT bậc 2 tìm x rồi thay giá trị của x vào biểu thức tính Q