\(\frac{x}{4}=\frac{y}{8}=\frac{z}{5}\)và M=\(\frac{x+2y}{y+z}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

\(\frac{x}{4}=\frac{y}{8}=\frac{x}{4}=\frac{2y}{16}=\frac{x+2y}{4+16}=\frac{x+2y}{20}\Rightarrow x+2y=\frac{20y}{8}\)

\(\frac{y}{8}=\frac{z}{5}=\frac{y+z}{8+5}=\frac{y+z}{13}\Rightarrow y+z=\frac{13y}{8}\)

\(\Rightarrow M=\frac{x+2y}{y+z}=\frac{20y}{8}.\frac{8}{13y}=\frac{20}{13}\)

N và P tính tương tự

14 tháng 3 2024

10 tháng 1 2020

Ta có: \(\frac{x}{y}=\frac{2}{3}\)

=> \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{y}{9}\)(1)

Có: \(\frac{x}{3}=\frac{z}{5}\)=> \(\frac{x}{6}=\frac{z}{10}\)(2)

Từ (1) ; (2) => \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)=> \(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)

=> \(\hept{\begin{cases}\frac{x^2}{36}=\frac{1}{4}\\\frac{y^2}{81}=\frac{1}{4}\\\frac{z^2}{100}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=9\\y^2=\frac{81}{4}\\z^2=25\end{cases}}\)

Vì x, y, z dương nên suy ra: \(\hept{\begin{cases}x=3\\y=\frac{9}{2}\\z=5\end{cases}}\)

=> \(x+2y-2z=3+2.\frac{9}{2}-2.5=2\)

10 tháng 1 2020

Ta có : \(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{3}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)(k>0)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}}\)

Thay x=6k; y=9k; z=10k vào \(x^2+y^2+z^2=\frac{217}{4}\) ta có:

 \(\left(6k\right)^2+\left(9k\right)^2+\left(10k^2\right)=\frac{217}{4}\)

\(\Rightarrow6^2.k^2+9^2.k^2+10^2.k^2=\frac{217}{4}\)

\(\Rightarrow k^2.\left(6^2+9^2+10^2\right)=\frac{217}{4}\)

\(\Rightarrow k^2.\left(36+81+100\right)=\frac{217}{4}\)

\(\Rightarrow k^2.217=\frac{217}{4}\)

\(\Rightarrow k^2=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}\)

\(\Rightarrow k=\pm\frac{1}{2}\)

Mà k >0

 \(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=6.\frac{1}{2}=3\\y=9.\frac{1}{2}=\frac{9}{2}\\z=10.\frac{1}{2}=5\end{cases}}\)( thỏa mãn x;y dương)

\(\Rightarrow x+2y-2z=3+2.\frac{9}{2}-2.5=3+9-10=2\)

Vậy x+2y-2z=2

Giải:Đặt x2 =y5 =z7 =k

⇒x=2k,y=5k,z=7k

Ta có: A=x−y+zx+2y−z 

⇒A=2k−5k+7k2k+2(5k)−7k =k(2−5+7)2k+10k−7k =4k(2+10−7)k =45 

Vậy A=45 

\(\frac{4}{5}\) nhé máy mik bị lỗi

18 tháng 6 2016

a)Đặt x/2=y/5=z/7=k suy ra x=2k, y=5k, z=7k> Thay vào A ta được kết quả là 4/5.

b)Vì x/3=y/4 nên x/15=y/20.Vì y/5=z/6 nên y/20=z/24

Suy ra:x/15=y/20=z/24.Tương tự phần a) đặt k rồi tính kết quả.


 

18 tháng 6 2016

a)Ta có:Ta có x/5 = y/4 = z/3 

Dễ thấy : y/4 = 2y/8 = -2y/-8 và z/3 = 3z/9 

Suy ra : x/5 = y/4 = z/3 => x/5 = 2y/8 = 3z/9 = (x + 2y + 3z)/(5 + 8 + 9) = (x + 2y + 3z)/22 
(tính chất của dãy tỉ số bằng nhau) 

Tương tự : x/5 = -2y/-8 = 3z/9 = (x - 2y + 3z)/(5 - 8 + 9) = (x- 2y + 3z)/6 

Ta có : (x + 2y + 3z)/22 = (x - 2y + 3z)/6 (cùng bằng x/5) 

=> (x + 2y + 3z)/(x - 2y + 3z) = 22/6 = 11/3 

b)cho x/3=y/4 va y/5=z/6.tinh M=2x+3y+4z/3x+4y+5z? | Yahoo Hỏi & Đáp

đặt x=2k ,y=5k, z=7k

=>A=2k-5k+7k/2k+10k-7k

      =(2-5+7)k/(2+10-7)k

     =4k/5k =4/5

1 tháng 9 2019

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x-2y+z}{y}=\frac{z-2x+y}{x}=\frac{x-2z+y}{z}=\frac{x-2y+z+z-2x+y+x-2z+y}{x+y+z}=0\)(vì x;y;z \(\ne\)0)

=> \(\hept{\begin{cases}\frac{x-2y+z}{y}=0\\\frac{z-2x+y}{x}=0\\\frac{x-2z+y}{z}=0\end{cases}}\) => \(\hept{\begin{cases}x-2y+z=0\\z-2x+y=0\\x-2z+y=0\end{cases}}\) => \(\hept{\begin{cases}x+z=2y\\y+z=2x\\x+y=2z\end{cases}}\) 

Khi đó, ta có: A = \(\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)+2020\)

=> A = \(\left(\frac{x+y}{x}\right)\left(\frac{y+z}{y}\right)\left(\frac{x+z}{z}\right)+2020\)

=> A = \(\frac{2z}{x}\cdot\frac{2x}{y}\cdot\frac{2y}{z}+2020\)

=> A = \(8+2020=2028\)