K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Sửa đề cho bạn luôn nhé!

\(\text{Ta có:}\)

\(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)

\(\text{Nhân cả hai vế của đẳng thức trên với}\) \(a^2+b^2+c^2\ne0\) \((do\) \(a,b,c\ne0\)),\(\text{ ta được:}\)

\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\) \(\left(1\right)\)

\(\text{Khi đó, ta khai triển vế phải của}\) \(\left(1\right)\) \(\text{thì} \) \(\left(1\right)\) \(\text{trở thành:}\)

\(VP=x^2+\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+y^2+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}+z^2\)

\(\text{So sánh vế trái của đẳng thức}\) \(\left(1\right)\), \(\text{ta dễ dàng nhận thấy cả hai vế có cùng đa thức}\) \(x^2+y^2+z^2\) \(\text{nên ta có thể viết lại }\) \(\left(1\right)\) \(\text{như sau:}\)

\(\dfrac{a^2y^2}{b^2}+\dfrac{a^2z^2}{c^2}+\dfrac{b^2x^2}{a^2}+\dfrac{b^2z^2}{c^2}+\dfrac{c^2x^2}{a^2}+\dfrac{c^2y^2}{b^2}=0\)

\(\Leftrightarrow\) \(\left(\dfrac{b^2x^2}{a^2}+\dfrac{c^2x^2}{a^2}\right)+\left(\dfrac{c^2y^2}{b^2}+\dfrac{a^2y^2}{b^2}\right)+\left(\dfrac{a^2z^2}{c^2}+\dfrac{b^2z^2}{c^2}\right)=0\)

\(\Leftrightarrow\) \(\dfrac{x^2}{a^2}\left(b^2+c^2\right)+\dfrac{y^2}{b^2}\left(c^2+a^2\right)+\dfrac{z^2}{c^2}\left(a^2+b^2\right)=0\) \(\left(2\right)\)

\(\text{Mặt khác, ta cũng có }\) \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\) \(a^2+b^2\ne0;\) \(b^2+c^2\ne0\) và \(c^2+a^2\ne0\) \(\left(3\right)\)

\(Từ\) \(\left(2\right)\) \(và\) \(\left(3\right)\),\(\text{ ta dễ dàng suy ra được }\) \(x=y=z=0\)

\(Vậy \) \(x^{2019}+y^{2019}+z^{2019}=0\) \((đpcm)\)

12 tháng 2 2020

Có: \(x+y+z=\frac{1}{2}\Leftrightarrow2x+2y+2z=1\)

Mặt khác: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2x+2y+2z}{xyz}=4\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}=4\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=4\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\) ( vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\) )

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{\frac{1}{2}}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{x+y+z}-\frac{1}{z}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y\right)\left(zx+yz+z^2\right)+xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+yz+zx+z^2\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^{2021}+y^{2021}=0\\y^{2017}+z^{2017}=0\\z^{2019}+x^{2019}=0\end{matrix}\right.\)\(\Leftrightarrow Q=0\)

Vậy...

NV
15 tháng 7 2020

a/ \(\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+y^2-2xy\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b/ \(\frac{a}{a+b^2}=\frac{a}{a\left(a+b+c\right)+b^2}=\frac{a}{a^2+b^2+a\left(b+c\right)}\le\frac{a}{2ab+a\left(b+c\right)}=\frac{1}{b+b+b+c}\)

\(\Rightarrow\frac{a}{a+b^2}=\frac{1}{b+b+b+c}\le\frac{1}{16}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{3}{b}+\frac{1}{c}\right)\)

Tương tự: \(\frac{b}{b+c^2}\le\frac{1}{16}\left(\frac{3}{c}+\frac{1}{a}\right)\) ; \(\frac{c}{c+a^2}\le\frac{1}{16}\left(\frac{3}{a}+\frac{1}{c}\right)\)

Cộng vế với vế:

\(VT\le\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)