K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

\(\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=>\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{3z^2}{75}\)

áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{3z^2}{75}=\frac{x^2+y^2-3z^2}{9+16-75}=\frac{50}{-50}=-1\)

\(\frac{x}{3}=-1=>x=-3\)

\(\frac{y}{4}=-1=>y=-4\)

\(\frac{z}{5}=-1=>z=-5\)

Vậy...

4 tháng 10 2018

mk bt sai cái j rồi sửa lại nha:

\(\frac{x^2}{9}=-1=>x^2=-9\left(KTM\right)\)

\(\frac{y^2}{16}=-1=>y^2=-16\left(KTM\right)\)

\(\frac{3z^2}{75}=-1=>z^2=-25\left(KTM\right)\)

Vậy ko có giá trị x,y,z nào t/m

8 tháng 10 2017

\(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64};x^2+2y^2+3z^2\)\(=-650\)

<=>\(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{4^3}\)

<=>\(\frac{x^2}{2^2}=\frac{2y^2}{2.3^2}=\frac{3z^2}{3.4^2}\)

=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{3z^2}{48}=\frac{x^2+2y^2-3z^2}{4+18-48}=\frac{-650}{-26}=25\)

=>\(\hept{\begin{cases}\frac{x}{2}=25\\\frac{y}{3}=25\\\frac{z}{4}=25\end{cases}}\)=>\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

vậy\(\hept{\begin{cases}x=50\\y=75\\z=100\end{cases}}\)

20 tháng 12 2018

sao tớ thấy nó cứ sai sai thế nào í...

4 tháng 10 2019

a) Vì \(3x=\frac{2}{3}y=\frac{4}{5}z\)

\(\Rightarrow3x:12=\frac{2}{3}y:12=\frac{4}{5}z:12\)

\(\Rightarrow\frac{x}{4}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{4}=\frac{y}{18}=\frac{z}{15}=\frac{x-y-z}{4-18-15}=\frac{10}{-29}=\frac{-10}{29}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-10}{29}.4=\frac{-40}{29}\\y=\frac{-10}{29}.18=\frac{-180}{29}\\z=\frac{-10}{29}.15=\frac{-150}{29}\end{cases}}\)

Vậy ...

b) Ta có; \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)và \(x^2+2y^2-3z^2=-650\left(1\right)\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\left(2\right)}\)

Thay (2) vào (1) ta được:

\(\left(2k\right)^2+2.\left(3k\right)^2-3.\left(4k\right)^2=-650\)

\(\Leftrightarrow4k^2+18k^2-48k^2=-650\)

\(\Leftrightarrow-26k^2=-650\)

\(\Leftrightarrow k^2=25\)

\(\Leftrightarrow k=\pm5\)

TH1: Thay k=5 vào (2) ta được:

\(\hept{\begin{cases}x=2.5=10\\y=3.5=15\\z=4.5=20\end{cases}}\)

TH2: Thay k=-5 vào (2) ta được:

\(\hept{\begin{cases}x=-5.2=-10\\y=-5.3=-15\\z=-5.4=-20\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left\{\left(10;15;20\right);\left(-10;-15;-20\right)\right\}\)

9 tháng 4 2016

cậu viết chắc lâu lắm nhỉ

a)x=4, y=6 ,z=10                                   c)x=6,y=9,z=12                              e)x=-3,y=-5,z=154/3

b)x=12,y=16,z=28                                   d) y=-28, x=-42,z=-20                   f)x=36,y=24,z=9

g)nản                                                    h)x=1,y=2,z=3

        làm mất bao nhiêu lâu. k đúng giùm

a)  ko có " z" sao làm!!

b) áp dụng t/c dãy tỉ số bằng nhau ta có:

 \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\) =\(\frac{z-x}{7-4}=\frac{16}{3}\)

=> x/3 = 16/3 => x = 16

=> y/4 = 16/3 => y = ...

=> z/7 = 16/3 => z = ...

22 tháng 12 2019

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha

13 tháng 10 2016

a) Ta có: x/2 = y/3 => x/8 = y/12 (1)

y/4 = z/5 => y/12 = z/15 (2)

Từ (1) và (2) => x/8 = y/12 = z/15

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2

x/8 = 2 => x = 2 . 8 = 16

y/12 = 2 => y = 2 . 12 = 24

z/15 = 2 => z = 2 . 15 = 30

Vậy x = 16; y = 24 và z = 30

b) Ta có: x/2 = y/3 => x/10 = y/15 (1)

y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)

Từ (1) và (2) => x/10 = y/15 = z/12

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7

x/10 = -7 => x = -7 . 10 = -70

y/15 = -7 => y = -7 . 15 = -105

z/12 = -7 => z = -7 . 12 = -84

Vậy x = -70; y = -105 và z = -84

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5

x/2 = 5 => x = 5 . 2 = 10

y/3 = 5 => y = 5 . 3 = 15

z/4 = 5 => z = 5 . 4 = 20

Vậy x = 10; y = 15 và z = 20.