Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
=> \(\frac{x}{2}.\frac{x}{2}.\frac{x}{2}=\frac{y}{3}.\frac{y}{3}.\frac{y}{3}=\frac{z}{5}.\frac{z}{5}.\frac{z}{5}=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)
=> \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}=\frac{810}{30}=27\)
=> \(\hept{\begin{cases}x^3=27.8=6^3\\y^3=27.27=9^3\\z^3=27.125=15^3\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow xyz=810\Leftrightarrow2k\cdot3k\cdot5k=810\)
\(\Rightarrow30k^3=810\Rightarrow k^3=27\)
\(\Rightarrow k^3=3^3\Rightarrow k=3\)
\(\Rightarrow y=3k=3\cdot3=9\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)(2)
thay (2) vào (1), ta được:
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)
từ đó
\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)
vậy x=6; y=9; z=15
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)
Đặt k = \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Khi đó : k3 = \(\frac{x}{2}\frac{y}{3}\frac{z}{5}=\frac{xyz}{2.3.5}=\frac{810}{30}=27\)
=> k = 3
Nên : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
\(\frac{z}{5}=3\Rightarrow z=15\)
Vậy x = 6 , y = 9 , z = 15
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)= k => \(x=2k\); \(y=3k\); \(z=5k\)
=> \(x.y.z=2k.3k.5k=30k^3=180\)=> \(k^3=\frac{180}{30}=6\)=> \(k=\sqrt[3]{6}\)
=> \(x=2\sqrt[3]{6}\); \(y=3\sqrt[3]{6}\); \(z=5\sqrt[3]{6}\)
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)
b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
\(\Rightarrow x=18;y=24;z=30\)
c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)
\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)
d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)
x/2=y/3=z/5=k
Suy ra:x=2k;y=3k;z=5k (1)
có xyz=810.thay (1) vào biểu thức ta có
2k*3k*5k=810
k^3*(2*3*5)=810
k^3*30=810
k^3=27
Suy ra : k=3
x/2=3 thì x=6
y/3=3 thì y=9
z/5=3 thì z=15
CHÚC BẠN HỌC TỐT
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
ta có : x/2=y/3=z/5
đặt x/2=y/3=z/5=k
=> x=2k ; y=3k ; z=5k
mà x.y.z=810
=> 2k.3k.5k=810
=> k3.(2.3.5)=810
=> k3.30=810
=> k3 =27
=> k=3
+,x=2k => x=2.3=6
+, y=3k => y=3.3=9
+, z=5k => z=5.3=15
Vậy x=6 ; y=9 ; z=15.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\ \frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1);(2) Suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tĩ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{3y}{36}=\frac{z}{15}=\frac{2x-3y+z}{18-36+15}=\frac{6}{-3}=-2\)
Suy ra
x = (-2) . 9 = -18
y = (-2) . 12 = -24
z = (-2) . 15 = -30
Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Suy ra
x = 2 . 10 = 20
y = 2 . 6 = 12
z = 2 . 21 = 42
Cách làm như sau:
Nhân các tử vs nhau, các mẫu vs nhau ta đc xyz/2*3*5=810/30=27
=> x=27*2=...
y=27*3=...
z=27*5=...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
=> x = 2k
y = 3k
z = 5k
xyz = 2k . 3k . 5k = 810
30 k3 = 810
=> k3 = 810 : 30 = 27
=> k = 3
Vì đề bài chỉ cần giá trị x nên
Với k = 3 => x = 6
Vậy x = 6
chậm hơn bạn rùi, mk đang định trl câu này
hix hix....