K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2016

Ta có : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-cya+bcx-abz+cay-bcx}{a^2+b^2+c^2}\)

\(\Rightarrow abz-cya=0\Leftrightarrow abz=cya\Leftrightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\left(1\right)\)

\(\Rightarrow bcx-abz=0\Leftrightarrow bcx=abz\Leftrightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) Ta có : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

21 tháng 7 2016

Ta có :  \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-cya}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}=\frac{abz-cya+bcx-abz+cay-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow abz-cya=0\Leftrightarrow abz=cya\Leftrightarrow bz=cy\Leftrightarrow\frac{y}{b}=\frac{z}{c}\)(1)

và \(bcx-abz=0\Leftrightarrow bcx=abz\Leftrightarrow cx=az\Leftrightarrow\frac{x}{a}=\frac{z}{c}\)(2)

Từ (1) và (2) ta có \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

14 tháng 6 2017

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

14 tháng 6 2017

* C1 :(bz - cy)/a = (abz - acy)/a2

(cx - az)/b = (bcx - abz)/b2

(ay - bx)/c = (acy - bcx)/c2

Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c

=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0

=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0

=>bz - cy = cx - az = ay - bx = 0

*Xét bz - cy = 0

=>bz = cy

=>z/c = y/b

Chứng minh tương tự = >x/a = y/b ; x/a = z/c

=> x/a = y/b = z/c

*C2 : 

(bz - cy)/a = (abz - acy)/ax

(cx - az)/by = (bcx - abz)/by

(ay - bx)/cz = (acy - bcx)/cz

Làm tương tự như C1

16 tháng 10 2019

Chúc bạn học tốt!

4 tháng 6 2019

#)Tuy k giải được nhưng có bài cho tham khảo nek :

   Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath 

   Link : https://olm.vn/hoi-dap/detail/7941323649.html 

   Mk sẽ gửi về chat cho

4 tháng 6 2019

Giải:

Đặt : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)  => \(\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó, ta có:

\(\frac{b.ck-c.bk}{a}=\frac{0}{a}=0\) (1)

\(\frac{c.ak-a.ck}{b}=\frac{0}{b}=0\) (2)

\(\frac{a.bk-b.ak}{c}=\frac{0}{c}=0\) (3)

Từ (1); (2); (3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

18 tháng 11 2017

Tham khảo ở đây:

Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath

mk k viết đề nha bạn!

\(=>\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c.\left(by-ax\right)}{c^2}\)

\(=>\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\)\(=\frac{abz-acy+bcx-acz+cay-bcx}{a^2+b^2+c^2}=0\)

\(=>\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bc}{c}=0\)

=> bz - cy = cx - az = ay - bx = 0

+) bz - cy = 0 => bz = cy => y / b = z/c 

+) cx - az = 0 => cx = az => x / a = z/ c
=> x / a = y / b = z/ c ( dpcm )

2 tháng 12 2019

Chúc bạn học tốt!

29 tháng 11 2016

vi bz-cy/a=cx-az/b=ay-bx/c=>a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2

=>abz-acy/a^2=bcx-abz/b^2=cay-cbx/c^2=>abz-acy+bcx-abz+cay-cbx/a^2+b^2+c^2

=>o/a^2+b^2+c^2=0

=>bz-cy=0=>y/b=z/c(1)

cx-az=o=>x/a=z/c(2)

từ (1) và (2) =>x/a=y/b=z/c