\(\frac{a}{c}=\frac{c}{b}\)cmr\(\frac{b-d}{a}=\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\(đat:\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(a,\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{bkb}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k};\frac{c^2-d^2}{cd}=\frac{d^2\left(k^2-1\right)}{d^2k}=\frac{k^2-1}{k}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\) \(b,\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{\left(k^2+1\right)};\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\) \(c,\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1};\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

16 tháng 7 2019

1. Ta có: \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a^2}{2c^2}=\frac{3ab}{3cd}=\frac{4b^2}{4d^2}=\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2}{5d^2}=\frac{6ab}{6cd}=\frac{5b^2+6ab}{5d^2+6cd}\)

Suy ra : \(\frac{2a^2-3ab+4b^2}{2c^2-3cd+4d^2}=\frac{5b^2+6ab}{5d^2+6cd}\)

\(\Rightarrow\frac{2a^2-3ab+4b^2}{5b^2+6ab}=\frac{2c^2-3cd+4d^2}{5d^2+6cd}\) \(\left(dpcm\right)\)

16 tháng 7 2019

ths bn nhiều

13 tháng 11 2017

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

xét 2 TH : 

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\left(3\right)\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

\(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\Rightarrow\frac{a}{b}=\frac{d}{c}\)

Từ hai trường hợp trên , nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\frac{a}{b}=\frac{c}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)

4 tháng 1 2018

ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(a,b,c,d\ne0;c\ne\pm d\right)\)

\(\Rightarrow\)cd(a2+b2)=ab(c2+d2)\(\Rightarrow\)a2cd+b2cd=abc2+abd2

\(\Rightarrow\)a2cd-abc2=abd2-b2cd \(\Rightarrow\)ac(ad-bc)=bd(ad-bc)

\(\Rightarrow\)(ad-bc) (ac-bd)=0\(\Rightarrow\orbr{\begin{cases}ad-bc=0\\ac-bd=0\end{cases}}\Rightarrow\orbr{\begin{cases}ad=bc\\ac=bd\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)(DPCM)

12 tháng 1 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

Ta có: \(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a^2}{c^2}\)

\(\frac{ab}{cd}=\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) => \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(3\right)\)

Từ (2),(3) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2-b^2}{c^2-d^2}\)

3 tháng 11 2018

\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có : 

\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)

\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)

\(Th2:x=-3\Rightarrow y=-4\)

3 tháng 11 2018

đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)

ta có:

\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

\(k=1\Rightarrow x=3.1=3,y=4.1=4\)

\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)

vậy x=3,y=4 hay x=-3, y=-4

2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)

7 tháng 8 2016

- Giống giống hằng đẳng thức nhỉ??

25 tháng 1 2017

Ta có \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2-2ab+b^2}{c^2-2cd+d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\left(2\right)\)

Từ điều (1) và (2)

\(\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)

\(\Rightarrow c\left(a+b\right)-d\left(a+b\right)=c\left(a-b\right)+d\left(a-b\right)\)

\(\Rightarrow ac+bc-ad-bd=ac-bc+ad-bd\)

\(\Rightarrow bc-ad=-bc+ad\)

\(\Rightarrow2bc=2ad\)

\(\Rightarrow bc=ad\)

\(\Rightarrow\left[\begin{matrix}\frac{a}{b}=\frac{c}{d}\\\frac{b}{a}=\frac{d}{c}\end{matrix}\right.\) ( đpcm )

đề sai phải là CMR \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{b}{a}=\frac{d}{c}\)