Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a,b,c,d\in N^{\times}\)nên:
\(\Rightarrow a+b+c< a+b+c+d\)
\(\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự ta có: \(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
Và: \(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
Và: \(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Lại có: \(a,b,c,d\in N^{\times}\) nên:
\(\Rightarrow a+b+c>a+b\)
\(\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự ta có: \(\frac{b}{a+b+d}< \frac{b}{a+b}\)
Và: \(\frac{c}{a+c+d}< \frac{c}{c+d}\)
Và: \(\frac{d}{b+c+d}< \frac{d}{c+d}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\) nên \(M\) không phải số tự nhiên.
a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n
=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n)
=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)
t i c k nha!! 4545654756678769780
Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)
\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)
b,Tương tự
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Xét \(VT=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
LINK dưới đây bạn nhé
http://olm.vn/hoi-dap/question/143125.html
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
Ta có :
\(a< b\Rightarrow2a< a+b\) \(\left(1\right)\)
\(c< d\Rightarrow2c< c+d\) \(\left(2\right)\)
\(m< n\Rightarrow2m< m+n\) \(\left(3\right)\)
Cộng ba bất đẳng thức cùng chiều \(\left(1\right),\left(2\right),\left(3\right)\) , ta được :
\(2a+2c+2m< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Vậy : \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=k\) nên a=bk;c=dk và m=nk
=>\(\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{\left(b+d\right)k}{b+d}=k\)(1)
=>\(\frac{a-m}{b-n}=\frac{bk-nk}{b-n}=\frac{\left(b-n\right)\cdot k}{b-n}=k\)(2)
Từ (1);(2) =>ĐPCM
cho mk một cái tick cho đủ 80