K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Áp dụng tính chất của dãy tỉ số bằng nhau có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a/b = 1 => a = b

b/c = 1 => b = c

=> a=b=c

=> \(M=\frac{a^{2012}.b^3.c}{b^{2016}}=\frac{b^{2012}.b^3.b}{b^{2016}}=\frac{b^{2016}}{b^{2016}}=1\)

10 tháng 11 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

\(\Rightarrow a=b=c\)

\(F=\frac{a^3.a^2.a^{2011}}{a^{2016}}=\frac{a^{3+2+2011}}{a^{2016}}=\frac{a^{2016}}{a^{2016}}=1\)

23 tháng 11 2016

bang 1

17 tháng 10 2016

Giup với nào vui

6 tháng 10 2019

Ta có :  \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

Áp dụng tính chất của dãy tủi số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=1.b=b\\\frac{b}{c}=1\Rightarrow b=1.c=c\\\frac{c}{a}=1\Rightarrow c=1.a=a\end{cases}}\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^{49}.b^{51}}{c^{100}}=\frac{a^{49}.a^{51}}{a^{100}}=\frac{a^{100}}{a^{100}}=1\)

Vậy giá trị của biểu thức là :  \(\frac{a^{49}.b^{51}}{c^{100}}=1\)

Chúc bạn học tốt !!!

18 tháng 12 2017

Xét \(a+b+c=0\) thì \(\hept{\begin{cases}a+2b=c\\b+2c=a\\c+2a=b\end{cases}}\)\(\Rightarrow P=\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{abc}=1\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(a+b+c=\frac{a+2b-c}{c}=\frac{b+2c-a}{a}+\frac{c+2a-b}{b}=\frac{a+2b-c+b+2c-a+c+2a-b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+2b=3c\\b+2c=3a\\c+2a=3b\end{cases}}\)\(\Rightarrow P=\frac{3a.3b.3c}{abc}=27\)

1 tháng 9 2020

Có a+2b-c/c=b+2c-a/a=c+2a-b/b

suy ra a+2b-c/c=b+2c-a/a=c+2a-b/b=a+2b-c+b+2c-a+c+2a-b/a+b+c=2a+2b+2c/a+b+c=2

suy ra a+2b-c=2c suy ra a+2b=3c

           b+2c-a=2a suy ra b+2c=3a

           c+2a-b=2b suy ra c+2a=3b

Có P=(2+a/b)(2+b/c)(2+c/a)=(2b+a/b)(2c+b/c)(2a+c/a)=(3c/b)(3a/c)(3b/a)=27abc/abc=27

24 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)\(a+b+c\ne0\) và \(a;b;c\ne0\)vì là mẫu của phân số )

\(\frac{a}{b}=1\Rightarrow a=b\)

\(\frac{b}{c}=1\Rightarrow b=c\)

\(\frac{c}{a}=1\Rightarrow c=a\)

\(\Rightarrow a=b=c\)

\(\Rightarrow\frac{a^{49}.b^{51}}{c^{100}}=\frac{a^{49}.a^{51}}{a^{100}}=\frac{a^{100}}{a^{100}}=1\)

8 tháng 10 2019

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\)

\(\Rightarrow a=b=c=d\)

Khí đó:

\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=4\)

Vậy M = 4

13 tháng 10 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{1}{2}.4=2\)