K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

"Chấm" nhẹ hóng cao nhân ạ :)

P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)

9 tháng 2 2019

Câu 3: Tham khảo đây nhá: Câu hỏi của Trương Thanh Nhân, t làm r,giờ lười đánh lại.

25 tháng 1 2018

Có :a^2/b+c + b^2/c+a + c^2/a+b

= a.(a/b+c) + b.(b/c+a) + c.(c/a+b)

= a.(a/b+c + 1 - 1) + b.(b/c+a + 1 - 1) + c.(c/a+b + 1 - 1)

= a. a+b+c/b+c + b. a+b+c/c+a + c. a+b+c/a+b - (a+b+c)

= (a+b+c).(a/b+c + b/c+a + c/a+b) - (a+b+c)

= (a+b+c)-(a+b+c)

= 0

=> ĐPCM

Tk mk nha

27 tháng 1 2020

Theo đề ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\) nên:

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=\left(a+b+c\right).1\)

Và: \(\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)

Từ trên ta suy ra: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

8 tháng 3 2021

Ta có :\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)

=> \(a\left(\frac{a}{b+c}\right)+b\left(\frac{b}{a+c}\right)+c\left(\frac{c}{a+b}\right)=0\)

=> \(a\left(\frac{a}{b+c}+1-1\right)+b\left(\frac{b}{a+c}+1-1\right)+c\left(\frac{c}{a+b}+1-1\right)=0\)

=> \(a\left(\frac{a+b+c}{b+c}-1\right)+b\left(\frac{a+b+c}{a+c}-1\right)+c\left(\frac{a+b+c}{a+b}-1\right)=0\)

=> \(a.\frac{a+b+c}{b+c}-a+b.\frac{a+b+c}{a+c}-b+c.\frac{a+b+c}{a+b}-c=0\)

=> \(\left(a+b+c\right).\frac{a}{b+c}+\left(a+b+c\right).\frac{b}{a+c}+\left(a+b+c\right).\frac{c}{a+b}-\left(a+b+c\right)=0\)

=> \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1\right)=0\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}-1=0\left(\text{Vì }a+b+c\ne0\right)\)

=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)(đpcm)

25 tháng 1 2017

A = \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

= \(a.\frac{a}{b+c}+b.\frac{b}{a+c}+c.\frac{c}{a+b}\)

=\(a.\frac{a}{b+c}+1-1+b.\frac{b}{a+c}+1-1+c.\frac{c}{a+b}+1-1\)  

= \(\frac{a\left(a+b+c\right)}{b+c}-a+\frac{b\left(a+b+c\right)}{a+b}-b+\frac{c\left(a+b+c\right)}{a+b}-c\)

= \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(a+b+c\right)\)

= (a+b+c) - (a+b+c) = 0 

25 tháng 1 2017

Thu Hà à cảm ơn bạn nhiều lắm!

Chúng ta làm bạn nha!

22 tháng 7 2016

) gt: a/(b+c) + b/(c+a) + c/(a+b) = 1 

A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)] 

= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1] 

= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c 

= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c) 

= (a+b+c) - (a+b+c) = 0 
 

Ta có : \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\frac{\left(a+b+c\right)a}{b+c}+\frac{\left(a+b+c\right)b}{c+a}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2+ab+ac}{b+c}+\frac{ab+b^2+bc}{c+a}+\frac{ac+bc+c^2}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab+ac}{b+c}+\frac{b^2}{a+c}+\frac{ab+bc}{c+a}+\frac{c^2}{a+b}+\frac{ac+bc}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+a+b+c-a-b-c=0\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)