Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\) mà\(\frac{a}{a'}=4\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
a,Do a/a'=b/b'=c/c'=4
=>a=4a';b=4b';c=4c'
=>a+b+c/a'+b'+c'=4a'+4b'+4c'/a'+b'+c'
=4.(a'+b'+c')/a'+b'+c'
=4
b, lam tuong tu phan a
+) Ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{a}{a'}=\frac{3b}{3n'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}=4\)
=> P=4
+)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
=> Q=4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0