K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ dãy tỉ số bằng nhau bài cho ta có

\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}=\frac{20x-15y+15y-12z+12z-20x}{25+9+16}=0\)

\(\Rightarrow4x-3y=5y-4z=3z-5x=0\)

....

15 tháng 12 2019

Từ \(\frac{4x-3y}{5}\)=\(\frac{5y-4z}{3}\)=\(\frac{3z-5x}{4}\)\(\frac{20x-15y}{25}\)=\(\frac{15y-12z}{9}\)=\(\frac{12z-20x}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{20x-5y}{25}\)=\(\frac{15y-12z}{9}\)\(\frac{12z-20x}{16}\)=\(\frac{20x-5y+15y-12z+12z-20x}{25+9+16}\)=\(\frac{0}{50}\)=0

+)4x-3y=0⇒4x=3y⇒\(\frac{x}{3}\)=\(\frac{y}{4}\)

+)5y-4z=0⇒5y=4z⇒\(\frac{y}{4}\)=\(\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)=\(\frac{x-y+z}{3-4+5}=\frac{2020}{4}=505\)

+)\(\frac{x}{3}=505\)⇒x=1515

+)\(\frac{y}{4}=505\)⇒y=2020

+)\(\frac{z}{5}=505\)⇒z=2525

Vậy....

13 tháng 11 2019

Đặt x/3=y/4=z/5=k

13 tháng 11 2019

bn giảng chi tiết đc ko :)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Lời giải:

Vì $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$

$\Rightarrow$ \(\left\{\begin{matrix} 4x=3y\\ 5y=4z\\ 3z=5x\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x-3y=0\\ 5y-4z=0\\ 3z-5x=0\end{matrix}\right.\)

\(\Rightarrow \frac{4x-3y}{2016}=0; \frac{5y-4z}{2017}=0; \frac{3z-5x}{2018}=0\)

\(\Rightarrow \frac{4x-3y}{2016}=\frac{5y-4z}{2017}=\frac{3z-5x}{2018}\)

Ta có đpcm.

8 tháng 9 2019

Cách này không biết đúng không, theo bình thường thì gặp mấy bài này thì làm kiểu này

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:\(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{\left(12z-15y\right)+\left(20x-12z\right)}{9+16}=\frac{20x-15y}{25}\)

Mà theo đề bài thì \(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{3y-4x}{5}\)

Cho nên \(\frac{20x-15y}{25}=\frac{3y-4x}{5}\Leftrightarrow\frac{4x-3y}{5}=\frac{3y-4x}{5}\Leftrightarrow4x-3y=0\Leftrightarrow4x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{4}\)

Chắc là làm hệt như trên thì được \(\frac{y}{4}=\frac{z}{5}\)rồi suy ra điều phải chứng minh là xong

8 tháng 9 2019

\(\frac{4z-5y}{3}=\frac{5x-3z}{4}=\frac{3y-4x}{5}\)

\(\Leftrightarrow\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{15y-20x}{25}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{12z-15y}{9}=\frac{20x-12z}{16}=\frac{15y-20x}{25}=\frac{0}{50}=0\)

\(\Rightarrow\hept{\begin{cases}12z=15y\\20x=12z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{z}{5}=\frac{y}{4}\\\frac{x}{3}=\frac{y}{4}\end{cases}}\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\left(đpcm\right)\)

26 tháng 8 2019

Mn vào tcn của con này, https://olm.vn/thanhvien/kimmai123az, PTD/KM ?, nó chuyên đi copy bài của ng khác và câu hỏi tương tự

26 tháng 8 2019

Bạn đấy làm gì mình không muốn biết và mình không cần biết, vào rồi thì sao ? Có ích gì không ? Đã không có ích còn tốn tgian, chi bằng dành nó để làm việc có ích thì hơn ^^

a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)

\(\Leftrightarrow141k^2=141\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow k=\pm1\)

TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)

TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy.....

9 tháng 1 2020

a)

Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)

\(\frac{x}{3}=1\Rightarrow x=3.1=3\)

\(\frac{y}{4}=1\Rightarrow y=4.1=4\)

\(\frac{z}{5}=1\Rightarrow z=5.1=5\)

Vậy x = 3

y=4

z=5

22 tháng 3 2020

Ta có:

\(\frac{4z-10y}{3}=\frac{10x-3z}{4}=\frac{3y-4x}{10}.\)

\(\Rightarrow\frac{3.\left(4z-10y\right)}{9}=\frac{4.\left(10x-3z\right)}{16}=\frac{10.\left(3y-4x\right)}{100}.\)

\(\Rightarrow\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{12z-30y}{9}=\frac{40x-12z}{16}=\frac{30y-40x}{100}=\frac{12z-30y+40x-12z+30y-40x}{9+16+100}=\frac{\left(12z-12z\right)-\left(30y-30y\right)+\left(40x-40x\right)}{125}=\frac{0}{125}=0.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{4z-10y}{3}=0\\\frac{10x-3z}{4}=0\\\frac{3y-4x}{10}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z-10y=0\\10x-3z=0\\3y-4x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4z=10y\\10x=3z\\3y=4x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{10}=\frac{y}{4}\\\frac{x}{3}=\frac{z}{10}\\\frac{y}{4}=\frac{x}{3}\end{matrix}\right.\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{10}.\)

\(\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}\)\(2x+3y-z=40.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{6}=\frac{3y}{12}=\frac{z}{10}=\frac{2x+3y-z}{6+12-10}=\frac{40}{8}=5.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=5\Rightarrow x=5.3=15\\\frac{y}{4}=5\Rightarrow y=5.4=20\\\frac{z}{10}=5\Rightarrow z=5.10=50\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(15;20;50\right).\)

Chúc bạn học tốt!