Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)
\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)
Vậy : \(A=0\)
\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = \(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)
Xét tích : \(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)
=\(x^3\left(z-y\right)+x^2\left(z-y\right)\left(z+y\right)+y^3\left(x-z\right)+y^2\left(x-z\right)\left(x+z\right)\)
\(+z^3\left(y-x\right)+z^2\left(y-x\right)\left(y+x\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2\left(z^2-y^2\right)+y^2\left(x^2-z^2\right)+z^2\left(y^2-x^2\right)\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)+x^2z^2-x^2y^2+y^2x^2-y^2z^2+z^2y^2-z^2x^2\)
\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
Như vậy:
\(\left[x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\right]\left(x+y+z\right)\)\(=x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)\)
<=> \(\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
Ta có: \(\frac{\frac{x^2\left(z-y\right)}{yz}+\frac{y^2\left(x-z\right)}{xz}+\frac{z^2\left(y-x\right)}{xy}}{\frac{x\left(z-y\right)}{yz}+\frac{y\left(x-z\right)}{xz}+\frac{z\left(y-x\right)}{xy}}\)
\(=\frac{\frac{x^3\left(z-y\right)}{xyz}+\frac{y^3\left(x-z\right)}{xyz}+\frac{z^3\left(y-x\right)}{xyz}}{\frac{x^2\left(z-y\right)}{xyz}+\frac{y^2\left(x-z\right)}{xyz}+\frac{z^2\left(y-x\right)}{xyz}}\)
\(=\frac{x^3\left(z-y\right)+y^3\left(x-z\right)+z^3\left(y-x\right)}{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}=x+y+z\)
Bạn xem lại đề nhé :)
Thay 1 bằng xy + yz + zx được :
\(1+y^2=xy+yz+zx+y^2=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\)
Tương tự : \(1+x^2=\left(x+y\right)\left(x+z\right)\), \(1+z^2=\left(x+z\right)\left(z+y\right)\)
Suy ra \(Q=x\sqrt{\frac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(z+y\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(xy+yz+zx\right)=2\)(vì x,y,z > 0)
\(\frac{x^2-yz}{yz}+1+\frac{y^2-zx}{zx}+1+\frac{z^2-xy}{xy}+1=3\Leftrightarrow\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=3\)
\(\Leftrightarrow\frac{1}{xyz}\left(x^3+y^3+z^3\right)=3\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)
Tới đây bạn thay vào nhé :)
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Suy ra : xy + yz + zx = 0 (nhân cả hai vế với xyz)
Khi đó : \(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)
Chỉ hộ cho tôi tại sao :
\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)với
Đừng có làm bừa chứ Nguyễn Quang Trung