K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)

\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)

9 tháng 7 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ab+ac}{abc}=2\)

\(\frac{bc+ab+ac}{a+b+c}=2\Leftrightarrow bc+ab+ac=2\left(a+b+c\right)\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}\)( * )

Để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)thì \(2\left(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}\right)=2\Leftrightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=1\)

\(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{a^2bc+bac^2+ab^2c}{\left(abc\right)^2}=\frac{abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{a+b+c}{abc}\)

mà a + b + c = abc \(\Rightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{abc}{abc}=1\Leftrightarrow\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\)

thay \(\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\) vào ( * ) ta được \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\left(đpcm\right)\)

9 tháng 7 2019

\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{bc.ac+ab.ac+ab.bc}{ab.bc.ac}\)

\(=\frac{abc.\left(a+b+c\right)}{a^2b^2c^2}=\frac{a+b+c}{abc}=1\left(\text{vì }a+b+c=abc\right)\)

\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\text{ từ}\left(1\right)\)

Vậy ...

4 tháng 3 2018

Có : 1/a + 1/b + 1/c = 2

<=> ( 1/a + 1/b + 1/c )^2 = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 + 2.(1/ab + 1/bc + 1/ca) = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 = 4 - 2.(1/ab + 1/bc + 1/ca)

                                        = 4 - 2.(a+b+c)/abc

                                        = 4 - 2 = 2

=> ĐPCM

Tk mk nha

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Rightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{4-2}{2}=1\) (do \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) )

\(\Leftrightarrow \frac{a+b+c}{abc}=1\)

\(\Leftrightarrow a+b+c=abc\)

Do đó ta có đpcm.

26 tháng 11 2017

nhưng cô ơi trong đề chỉ nói 1/a+1/b+1/c=2 chứ có phải 1/a^2+1/b^2+1/c^2=2 đâu cô?

25 tháng 1 2017

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\frac{yz+xz+xy}{xyz}=0\)

yz + xz + xy = 0

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=x^2+y^2+z^2+2\times\left(xy+xz+yz\right)=x^2+y^2+z^2+2\times0=x^2+y^2+z^2\left(\text{đ}pcm\right)\)

25 tháng 1 2017

a) Từ giả thiết suy ra: xy + yz + zx = 0

Do đó:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)=x^2+y^2+z^2\)

b) Đặt \(\frac{1}{a-b}=x\); \(\frac{1}{b-c}=y\); \(\frac{1}{c-a}=z\)

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=a-b+b-c+c-a=0\)

Theo câu a ta có: \(x^2+y^2+z^2=\left(x+y+z\right)^2\)

Suy ra điều phải chứng minh

4 tháng 4 2017

Theo bài ra  ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)

\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)

Do đó ta có : 

\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm) 

25 tháng 5 2016

Ta có : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\) hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=4\)

Mà : \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{\left(a+b+c\right)}{abc}=1\)

Vì : \(\left(a+b+c=abc\right)\)

Nên bằng 1

Vì vậy : \(2\times\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\left(đpcm\right)\)

25 tháng 5 2016
ta có ( 1/a + 1/b + 1/c ) ^ 2 = 4 hay 1/a^2 + 1/ b^2 + 1/c^2 + 1/ab + 1/bc+ 1/ca = 4 mà 1/ab + 1/bc+ 1/ca = ( a + b + c ) / abc = 1 ( vì a + b + c =abc ) nên = 1 vì vậy 2 nhân (1/ab + 1/bc+ 1/ca )= 2 từ đêy suy ra đpcm
11 tháng 11 2019

từ a+b+c = 2  suy ra ( a+b+c)^2 =4 <=> a^2 +b^2 +c^2 + 2 (ab+ac+bc)=4  ma2 a^2 + b^2 +c^2 = 2 nên suy ra 2(ab+bc+ac)=2 <=> ab +ac+bc=1 , chia cả 2 vế cho abc khác 0 ta được 1/a+1/b+1/c = 1/abc (đpcm)

11 tháng 11 2019

Ta có: \(a+b+c=2\)

\(\Leftrightarrow\left(a+b+c\right)^2=4\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=4\)

\(\Leftrightarrow2+2\left(ab+bc+ac\right)=4\)(Vì \(a^2+b^2+c^2=2\))

\(\Leftrightarrow2\left(ab+bc+ac\right)=2\)

\(\Leftrightarrow ab+bc+ac=1\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\left(đpcm\right)\)

5 tháng 4 2017

a) đề thiếu òi bạn à