K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 4 2018

Lời giải:

Ta có:

\(f(x)=x^2+x\Rightarrow \frac{1}{f(x)}=\frac{1}{x^2+x}=\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{x+1}\)

Do đó:

\(\frac{1}{f(1)}=1-\frac{1}{2}\)

\(\frac{1}{f(2)}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{f(3)}=\frac{1}{3}-\frac{1}{4}\)

......

\(\frac{1}{f(2014)}=\frac{1}{2014}-\frac{1}{2015}\)

\(\frac{1}{f(2015)}=\frac{1}{2015}-\frac{1}{2016}\)

Cộng theo vế:
\(\frac{1}{f(1)}+\frac{1}{f(2)}+\frac{1}{f(3)}+...+\frac{1}{f(2014)}+\frac{1}{f(2015)}=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

13 tháng 12 2022

Bài 2:

f(x)=x^2; g(x)=2/x

f(g(x))=(2/x)^2=4/x^2

g(f(x))=g(x^2)=2/x^2

18 tháng 4 2017

Ta có y = f(x) = 3x2 + 1. Do đó

f(\(\dfrac{1}{2}\)) = 3.\(\left(\dfrac{1}{2}\right)^2\) + 1 = \(\dfrac{3}{4}\)+ 1 = \(\dfrac{7}{4}\)

f(1) = 3.12 + 1 = 3.1 + 1 = 3 + 1 = 4

f(3) = 3.32 + 1 = 3.9 + 1 = 27 + 1 = 28.



19 tháng 4 2017

y = f (x) = 3x2 + 1

f \(\left(\dfrac{1}{2}\right)\)= 3 . \(\left(\dfrac{1}{2}\right)^2\) + 1 = 3 . \(\dfrac{1}{4}\) + 1 = \(\dfrac{3}{4}+1\) = \(\dfrac{7}{4}\)

f (1) = 3 . 12 + 1= 3 + 1 = 4

f (3) = 3 . 32 + 1 = 3 . 9 + 1 = 28

\(F=\left(-\dfrac{1}{2015}\right)^0-\left(\dfrac{13}{27}.\dfrac{162}{39}-1\right)^{2015}+\left(-\dfrac{1}{3}\right)^2\\ F=1-\left(2-1\right)^{2015}+\dfrac{1}{9}\\ F=1-1+\dfrac{1}{9}\\ F=\dfrac{1}{9}\)

Chúc bạn học tốt!!!ok

7 tháng 8 2017

bn làm bài này rồi hả

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

24 tháng 7 2017

\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)

\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)

\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)

\(MIN_{\left|x\right|+1}=1\)

\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)

\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)

\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)

\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)

\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)

\(MIN_{3\left|x\right|+1}=1\)

\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)

\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)

\(\)

6 tháng 5 2018

C1:Chương IV : Biểu thức đại số

6 tháng 5 2018

C2: Có sai sót j mong bn thông cảm! Viết hơi ẩu ☺Chương IV : Biểu thức đại số

14 tháng 11 2017

Câu C

15 tháng 11 2017

Why ?!?

21 tháng 3 2018

Câu hỏi của chíp chíp - Toán lớp 7 | Học trực tuyến Full dễ ok??

OK???????

21 tháng 3 2018

Trừ câu F ra thì dệ hết

21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô