K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

3 5 B A C E D

a ) Xét \(\Delta ABC\)vuông tại A (gt) có :

\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )

\(\Rightarrow3^2+AC^2=5^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=25-9\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )

b ) Xét 2 \(\Delta\)vuông ABE và DBE có :

\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)

\(AB=DB\left(gt\right)\)

BE : cạnh chung 

Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )

\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)

Hay BE là tia phân giác của \(\widehat{ABC}\)

c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)

\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )

+ Xét \(\Delta DEC\)vuông tại D (gt) có :

Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )

\(\Rightarrow EC>DE\)

Mà \(DE=AE\left(cmt\right)\)

\(\Rightarrow EC>AE\)

Hay \(AE< EC\)

d ) Vì \(AB=DB\left(gt\right)\)

\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)

+ Vì \(AE=DE\left(cmt\right)\)

\(\Rightarrow E\)thuộc đường trung trực của AD (2)

Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)

Chúc bạn học tốt !!!

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

25 tháng 3 2021

bạn giải cho mình b c và d nữa đc ko? cảm ơn bạn

 

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

A B C D E 3 5

a) Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A có:

\(BC^2=AC^2+AB^2\)

\(\Rightarrow AC^2=BC^2-AB^2\)

Hay \(AC^2=5^2-3^2\)

\(\Rightarrow AC^2=25-9\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

b) Xét \(\Delta ABE\)và \(\Delta DBE\)có:

\(\widehat{BAE}=\widehat{BDE}=90^o\)

\(BA=BD\left(gt\right)\)

\(BE\)là cạnh chung

Do đó \(\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)(2 góc tương ứng)

\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABC}\)

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

a: AC=4cm

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

BA=BD

Do đó: ΔBAE=ΔBDE

Suy ra: \(\widehat{ABE}=\widehat{DBE}\)

hay BE là tia phân giác của góc ABC

c: Ta có: ΔBAE=ΔBDE

nên EA=ED

mà ED<EC

nên EA<EC

d: Ta có: BA=BD

nên B nằm trên đường trung trực của AD(1)

Ta có: EA=ED

nên E nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BE là đường trung trực của AD

13 tháng 8 2022

Bài 1:

a, Ta có: ΔABC vuông tại A (gt)

=> BC2 = AB2 + AC2

=> AC2 = BC2 - AB2

             = 102 - 62

             = 100 - 36

             = 64

=> AC2 = 64

=> AC = 8 cm

b, Vì 6 cm < 8 cm < 10 cm 

=> AB < AC < BC

=> ˆACB<ˆABC<ˆBAC