\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{c}{d}\). chứng mk: \(\left(\d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{c}{d}\)=\(\dfrac{a+b+c}{b+c+d}\)\(\Rightarrow\)\(\dfrac{a^3}{b^3}\)=\(\dfrac{c^3}{d^3}\)=\(\dfrac{c^3}{d^3}\)=\(\dfrac{\left(a+b+c\right)}{\left(b+c+d\right)}\) (1)

\(\dfrac{a^3}{b^3}\)=

15 tháng 10 2017

\(\dfrac{a^3}{b^3}\)=\(\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) (2)

Từ (1), (2) suy ra: \(\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)}\)=\(\dfrac{a}{d}\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

25 tháng 11 2017

A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)

3 tháng 1 2018

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a+b+c}{b+c+d}\\\dfrac{b}{c}=\dfrac{a+b+c}{b+c+d}\\\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\) (đpcm)

3 tháng 1 2018

bn cũng có thể tham khảo

https://hoc24.vn/hoi-dap/question/466226.html

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

AH
Akai Haruma
Giáo viên
3 tháng 4 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3(*)\)

Lại có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow \left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}\)

\(\Leftrightarrow \left(\frac{a}{b}\right)^3=\frac{a}{d}(**)\)

Từ \((*); (**)\Rightarrow \left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\) (đpcm)