\(\dfrac{ab}{2014}=\dfrac{1}{c}\)

Tính giá trị của biểu thức

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Từ \(\dfrac{ab}{2014}=\dfrac{1}{c}\Rightarrow abc=2014\) thay vào \(A\) ta có:

\(A=\dfrac{abc\cdot a}{ab+abc\cdot a+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{b\left(ac+c+1\right)}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac\cdot ab}{ab\left(ac+c+1\right)}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac}{ac+c+1}+\dfrac{1}{ac+c+1}+\dfrac{c}{ac+c+1}\)

\(=\dfrac{ac+c+1}{ac+c+1}=1\Rightarrow A=1\)

8 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}=\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) (2)

Từ (1);(2) => \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)

23 tháng 5 2017

Đặt : \(\dfrac{a}{b}=\dfrac{c}{d}=k\) (k khác 0)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Khi đó:

+)\(\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\)

\(=\left(\dfrac{b.\left(k-1\right)}{d.\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\) (1)

+)\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\)

\(=\dfrac{b^{2014}.\left(k^{2014}+1\right)}{d^{2014}.\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\) (2)

Từ (1) và (2) suy ra

(đ.p.c.m)

23 tháng 5 2017

Tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) có thể viết \(\dfrac{a}{c}=\dfrac{b}{d}\). Theo tính chất của dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\) hay nâng lên lũy thừa 2014:

\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

Áp dụng lần nữa tính chất của tỉ số bằng nhau sẽ được:

\(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)

12 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2014}=\left(\dfrac{bk+b}{dk+d}\right)^{2014}=\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2014}=\left(\dfrac{b}{d}\right)^{2014}\)\(\Rightarrow\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{bk^{2014}+b^{2014}}{dk^{2014}+d^{2014}}=\dfrac{b\left(k^{2014}+b^{2013}\right)}{d\left(k^{2014}+d^{2013}\right)}\)

2 cái này thấy nó ko giống nhau lắm:v

12 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có:+) \(\left(\dfrac{a+b}{c+d}\right)^{2014}=\left(\dfrac{bk+b}{dk+d}\right)^{2014}=\left[\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right]^{2014}=\left(\dfrac{b}{d}\right)^{2014}\) (1)

+) \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\dfrac{b^{2014}.k^{2014}+b^{2014}}{d^{2014}.k^{2014}+d^{2014}}\)

\(=\dfrac{b^{2014}.\left(k^{2014}+1\right)}{d^{2014}.\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2014}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) => đpcm

1 tháng 11 2017

\(\dfrac{a}{b}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;c=dk\\ \dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{\left(bk\right)^{2014}+b^{2014}}{\left(dk\right)^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}\\ \left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}=\dfrac{b^{2014}}{d^{2014}}\\ \RightarrowĐPCM\)

31 tháng 3 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Xét \(VT=\left(\dfrac{a-b}{c-d}\right)^{2014}=\left(\dfrac{bk-b}{dk-d}\right)^{2014}=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^{2014}=\left(\dfrac{b}{d}\right)^{2014}\left(1\right)\)

Xét \(VP=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\dfrac{b^{2014}k^{2014}+b^{2014}}{d^{2014}k^{2014}+d^{2014}}=\dfrac{b^{2014}\left(k^{2014}+1\right)}{d^{2014}\left(k^{2014}+1\right)}=\dfrac{b^{2014}}{d^{2014}}=\left(\dfrac{b}{d}\right)^{2014}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) ta có ĐPCM

bài 1 a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\) c. với giá trị nào của x,y thì M=0 bài 2: cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\) Tìm giá trị của P. Biết rằng: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\) bài 3: Tính giá trị của biểu...
Đọc tiếp

bài 1

a. tính tổng M=\(\dfrac{1}{2}\)\(x^5\)y-\(\dfrac{3}{4}\)\(x^5\)y+\(x^5\)y

b.Tính giá trị của biểu thức M tại x=-1,y=\(\dfrac{1}{3}\)

c. với giá trị nào của x,y thì M=0

bài 2:

cho biểu thức P=\(\dfrac{x+y}{z+t}\)+\(\dfrac{y+z}{t+x}\)+\(\dfrac{z+t}{x+y}\)+\(\dfrac{t+x}{z+y}\)

Tìm giá trị của P. Biết rằng:

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

bài 3:

Tính giá trị của biểu thức

\(\dfrac{3a-b}{2a+7}+\dfrac{3b-a}{2b-7}v\text{ới}\) a-b=7 và a\(\ne\)-3,5;b\(\ne\)3,5

bài 4:

Tính nhanh giá trị của biểu thức sau :

M=\(3\dfrac{1}{117}.4\dfrac{1}{119}-1\dfrac{116}{117}.5\dfrac{118}{119}-\dfrac{5}{119}\)

Bài 5: cho 3 số a,b,c thỏa mãn abc=1 tính

S=\(\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}\)

bài 6:

tìm các số nguyên dương a,b,c biết rằng

\(a^3-b^3-c^3=3ab\) (1)

\(a^2\)=2(b+c) (2)

bài 7

cho A=\(x^{2014}-2013x^{2013}-2013x^{2012}-2013x^{2011}-...-2013x+1\)

tính giá trị của A khi x=2014

1

Câu 7:

x=2014 nên x-1=2013

\(A=x^{2014}-x^{2013}\left(x-1\right)-x^{2012}\left(x-1\right)-...-x\left(x-1\right)+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}+x^{2012}-...-x^2+x+1\)

=x+1

=2014+1=2015

25 tháng 3 2018
https://i.imgur.com/WpsxTIJ.jpg