K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

\(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}=4\Rightarrow\left\{{}\begin{matrix}a=4a'\\b=4b'\\c=4c'\end{matrix}\right.\)

\(P=\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)\(\)

5 tháng 6 2018

a, Vì \(\dfrac{a}{c}=\dfrac{c}{b}\Rightarrow ab=c^2\)

Ta có :

\(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b+a\right)\left(b-a\right)}{a^2+ab}=\dfrac{\left(b+a\right)\left(b-a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\)

Vậy \(\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{b-a}{a}\)

30 tháng 5 2018

Từ giả thiết \(\Rightarrow a=4a';b=4b';c=4c'\)

Nên \(\dfrac{a+b+c}{a'+b'+c'}=\dfrac{4\left(a'+b'+c'\right)}{a'+b'+c'}=4\)

\(\dfrac{a-3b+2c}{a'-3b'+2c'}=\dfrac{4\left(a'-3b'+2c'\right)}{a'-3b'+2c'}=4\)

30 tháng 5 2018

@Phạm Ngân Hà mk ko biet cach nay co dung ko ban xem giup mk nhe :v

\(\dfrac{b}{b'}=\dfrac{3b}{3b'};\dfrac{c}{c'}=\dfrac{2c}{2c'}\)

de bai: \(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\Leftrightarrow\dfrac{a}{a'}=\dfrac{3b}{3b'}=\dfrac{2c}{2c'}=\dfrac{a-3b+2c}{a'-3b'+2c'}=4\)(TCDTSBN)

18 tháng 7 2018

(+) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

(+) \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (*)

\(\Leftrightarrow4ac+6bc-6ad-9bd=4ac-6bc+6ad-9bd\)

\(\Leftrightarrow12bc=12ad\Leftrightarrow bc=ad\) (đúng)

Vậy (*) đúng (đpcm)

5 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

=> \(\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{3c-3d}\)

Vậy \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\) (ĐPCM)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{2a-3b}{2a+3b}=\dfrac{2bk-3b}{2bk+3b}=\dfrac{2k-3}{2k+3}\)

\(\dfrac{2c-3d}{2c+3d}=\dfrac{2dk-3d}{2dk+3d}=\dfrac{2k-3}{2k+3}\)

Do đó: \(\dfrac{2a-3b}{2a+3b}=\dfrac{2c-3d}{2c+3d}\)

b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=k\)

Do đó: \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

5 tháng 11 2021

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)

Áp dụng tc dtsbn:

\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

a) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{4a}{3b}=\frac{4c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{4a}{3b}=\frac{4c}{3d}\Rightarrow\frac{4a-3b}{4a+3b}=\frac{4c-3d}{4c+3d}\Rightarrow\frac{4a-3d}{4c-3d}=\frac{4a+3b}{4c+3d}\)

b) Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{3b}=\frac{2c}{3d}\)

Áp dụng dãy tỉ số bằng nhau ta có :

\(\frac{2a}{3b}=\frac{2c}{2d}\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)

4 tháng 11 2017

a) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)

Từ (1) và (2) suy ra \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có:

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b}{d}\) (2)

Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

4 tháng 11 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số = nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)

= \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\) (đpcm)

16 tháng 10 2017

a)đặt \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=k\(\Rightarrow\)a=bk, c=dk
\(\dfrac{2a+3b}{2a-3b}=\dfrac{2bk+3b}{2bk-3b}=\dfrac{b\left(2k+3\right)}{b\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (1)
\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{d\left(2k+3\right)}{d\left(2k-3\right)}=\dfrac{2k+3}{2k-3}\) (2)
từ (1),(2)\(\Rightarrow\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

b)ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
câu c bn tự giải nhé dễ mak ahihihiyeuchúc bn hc tốt