Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{a}{b+2c+3d}+\dfrac{b}{c+2d+3a}+\dfrac{c}{d+2a+3b}+\dfrac{d}{a+2b+3c}\)
\(=\dfrac{a^2}{ab+2ac+3ad}+\dfrac{b^2}{bc+2bd+3ab}+\dfrac{c^2}{cd+2ac+3bc}+\dfrac{d^2}{ad+2bd+3cd}\)
\(\ge\dfrac{\left(a+b+c+d\right)^2}{4\left(ab+ad+bc+bd+ca+cd\right)}\ge\dfrac{\left(a+b+c+d\right)^2}{\dfrac{3}{2}\left(a+b+c+d\right)^2}=\dfrac{2}{3}\)
*Chứng minh \(4\left(ab+ad+bc+bd+ca+cd\right)\le\dfrac{3}{2}\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(a-c\right)^2+\left(c-d\right)^2\ge0\)
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm
Áp dụng BĐT AM-GM ta có:
\(P=\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
\(=\dfrac{\sqrt{6}a}{\sqrt{3a\left(2b+2c-a\right)}}+\dfrac{\sqrt{6}b}{\sqrt{3b\left(2c+2a-b\right)}}+\dfrac{\sqrt{6}c}{\sqrt{3c\left(2a+2b-c\right)}}\)
\(\ge\dfrac{\sqrt{6}a}{\dfrac{3a+2b+2c-a}{2}}+\dfrac{\sqrt{6}b}{\dfrac{3b+2c+2a-b}{2}}+\dfrac{\sqrt{6}c}{\dfrac{3c+2a+2b-c}{2}}\)
\(\ge\dfrac{\sqrt{6}a}{a+b+c}+\dfrac{\sqrt{6}b}{a+b+c}+\dfrac{\sqrt{6}c}{a+b+c}\)
\(=\dfrac{\sqrt{6}\left(a+b+c\right)}{a+b+c}=\sqrt{6}\)
M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)
Áp dụng định lý viettel :( :v )
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)
\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)
Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)
@_@ đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi
Giả sử c là số ở giửa a và b. khi đó \(\left(b-c\right)\left(c-a\right)\ge0\)
Ta chứng minh :
\(VT\le c\left(\dfrac{b^2}{2b^2+a^2+c^2}+\dfrac{a^2}{2a^2+b^2+c^2}\right)+\dfrac{abc}{a^2+b^2+2c^2}\)(*)
\(\Leftrightarrow\dfrac{\left(c-a\right)\left(b-c\right)\left(b^2+c^2-bc+a^2\right)}{\left(a^2+c^2+2b^2\right)\left(b^2+a^2+2c^2\right)}\ge0\) (Đúng)
Áp dụng BĐT AM-GM:
\(VT\le\dfrac{c}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{b^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{a^2}{a^2+c^2}\right)+\dfrac{abc}{2ac+2bc}\)
\(\le\dfrac{c}{4}\left(1+\dfrac{b^2}{2bc}+\dfrac{a^2}{2ac}\right)+\dfrac{\dfrac{\left(a+b\right)^2}{4}}{2\left(a+b\right)}=\dfrac{c}{4}+\dfrac{a+b}{8}+\dfrac{a+b}{8}\)
\(=\dfrac{a+b+c}{4}\)( \(ĐpcM\))
Dấu = xảy ra khi a=b=c
\(A=\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\)
\(\Leftrightarrow2A=\dfrac{2a^2}{2a^2+bc}+\dfrac{2b^2}{2b^2+ac}+\dfrac{2c^2}{2c^2+ab}\)
\(=1-\dfrac{bc}{2a^2+bc}+1-\dfrac{ac}{2b^2+ac}+1-\dfrac{ab}{2c^2+ab}\)
\(=3-\dfrac{bc}{2a^2+bc}-\dfrac{ac}{2b^2+ac}-\dfrac{ab}{2c^2+ab}\)
CM: \(P=\dfrac{bc}{2a^2+bc}+\dfrac{ac}{2b^2+ac}+\dfrac{ab}{2c^2+ab}\ge1\)
Thật vậy:
\(P\ge\dfrac{\left(ab+bc+ac\right)^2}{2a^2bc+b^2c^2+2b^2ac+a^2c^2+2c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{a^2bc+a^2bc+b^2c^2+b^2ac+b^2ac+a^2c^2+c^2ab+c^2ab+a^2b^2}\)
\(=\dfrac{\left(ab+bc+ac\right)^2}{ab\left(ac+bc+ab\right)+bc\left(ab+bc+ac\right)+ac\left(ab+bc+ac\right)}\)
\(=1\)
\(2A=3-P\le3-1=2\)
\(2A\le2\Leftrightarrow A\le1\)
\("="\Leftrightarrow a=b=c\)
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Áp dụng BĐT AM - GM, ta có:
\(a^2+2b^2+3\)
\(=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)
\(\ge2ab+2b+2\)
Tương tự, ta có: \(b^2+2c^2+3\ge2bc+2c+2\) và \(c^2+2a^2+3\ge2ac+2a+2\)
\(VT=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
\(\le\dfrac{1}{2ab+2b+2}+\dfrac{1}{2bc+2c+2}+\dfrac{1}{2ac+2a+2}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{abc}{bc+c+abc}+\dfrac{abc}{ac+a^2bc+abc}\right)\) (Thay abc = 1)
\(=\dfrac{1}{2}\left(\dfrac{1}{ab+b+1}+\dfrac{ab}{b+1+ab}+\dfrac{b}{1+ab+b}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1+ab+b}{ab+b+1}\)
\(=\dfrac{1}{2}=VP\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi a = b = c = 1
theo đề bài, \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)=> a=b=c=d và lớn hơn 0
thay b,c,d thành a, có:
A= \(\dfrac{2011a-2010b}{c+d}\)\(+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2011a}{b+c}\)
=\(\dfrac{a\left(2011-2010\right)}{2a}+\dfrac{a\left(2011-2010\right)}{2a}+\dfrac{a\left(2011-2010\right)}{2a}+\dfrac{a\left(2011-2011\right)}{2a}\)
=\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+0=\dfrac{3}{2}=1.5\)
\(A=1,5\)