Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a - 1 / 2 = b + 3 / 4 = c - 5 / 6
<=> 5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
5a - 5 / 10 = 3b + 9 / 12 = 4c - 20 / 24 = ( 5a - 3b - 4c ) - 5 - 9 + 20 / 10 - 12 - 24 = 52/-26 = -2
=> a - 1 / 2 = -2 <=> a = -3
=> b + 3 / 4 = -2 <=> b = -5
=> c - 5 / 6 = -2 <=> c = -7
Vậy a = -3 ; b = -5 ; c = -7
hình như bạn tính nhầm chỗ b + 3 / 4 = -2 <=> b phải = -11 ko phải = -5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}=\dfrac{5a-3b-4c-5-9+20}{5\cdot2-3\cdot4-4\cdot6}=\dfrac{52}{-26}=-2\)
Do đó: a-1=-4; b+3=-8; c-5=-12
=>a=-3; b=-11; c=-7
bài 2 : a) \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
áp dụng dảy tỉ số bằng nhau
ta có : \(\dfrac{5\left(a-1\right)-3\left(b+3\right)-4\left(c-5\right)}{5.2-3.4-4.6}\)
\(=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=\dfrac{\left(5a-3b-4c\right)-5-9+20}{-26}\)
\(=\dfrac{46+6}{-26}=\dfrac{52}{-26}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a-1}{2}=-2\\\dfrac{b+3}{4}=-2\\\dfrac{c-5}{6}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-1=-4\\b+3=-8\\c-5=-12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right.\)
vậy \(a=-3;b=-11;c=-7\)
b) ta có : \(3a=2b\Leftrightarrow6a=4b=5c\Leftrightarrow\dfrac{6a}{2}=\dfrac{4b}{2}=\dfrac{5c}{2}\)
áp dụng dảy tỉ số bằng nhau
ta có \(\dfrac{-60a-60b+60c}{-10.2-15.2+12.2}=\dfrac{60\left(-a-b+c\right)}{-20-30+24}\)
\(=\dfrac{60\left(-52\right)}{-26}=\dfrac{-3120}{-26}=120\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{6a}{2}=120\\\dfrac{4b}{2}=120\\\dfrac{5c}{2}=120\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6a=240\\4b=240\\5c=240\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=40\\b=60\\c=48\end{matrix}\right.\)
vậy \(a=40;b=60;c=48\)
\(\dfrac{4}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}-\dfrac{2y}{6}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow24=x\left(1+2y\right)\)
\(\Rightarrow x;1+2y\inƯ\left(24\right)\)
\(Ư\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Mà 1+2y lẻ nên:
\(\left\{{}\begin{matrix}1+2y=1\Rightarrow2y=0\Rightarrow y=0\\x=24\\1+2y=-1\Rightarrow2y=-2\Rightarrow y=-1\\x=-24\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1+2y=3\Rightarrow2y=2\Rightarrow y=1\\x=8\\1+2y=-3\Rightarrow2y=-4\Rightarrow y=-2\\x=-8\end{matrix}\right.\)
Mk chỉ làm 1 câu thôi mấy câu sau tương tự theo cách đó nhoa:v
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\dfrac{b^4}{d^4}\)
\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{bk^4+b^4}{dk^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\)
\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\Rightarrowđpcm\)
Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^4}{c^4}\)=\(\dfrac{b^4}{d^4}\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^4\)(2)
Từ (1) và (2)suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^4\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(đpcm)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a+3b}{5c+3d}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5b}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)=\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Do đó: \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{a}{c}\right)^2\)và \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{b}{d}\right)^2\)
=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\) và \(\dfrac{ab}{cd}\)=\(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{7a^2}{7c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{3ab}{3cd}\)=\(\dfrac{7a^2+3ab}{7c^2+3cd}\)(1)
Ta có: \(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=> \(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{7a^2+3ab}{7c^2+3cd}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)=\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a) Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\\\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\end{matrix}\right.\Rightarrowđpcm\)
b) \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}=\dfrac{x-3}{2015}+\dfrac{x-4}{2014}\)
\(\Rightarrow\left(\dfrac{x-1}{2017}-1\right)+\left(\dfrac{x-2}{2016}-1\right)=\left(\dfrac{x-3}{2015}-1\right)+\left(\dfrac{x-4}{2014}-1\right)\)\(\Rightarrow\dfrac{x-2018}{2017}+\dfrac{x-2018}{2016}=\dfrac{x-2018}{2015}+\dfrac{x-2018}{2014}\)
\(\Rightarrow\left(x-2018\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
vì \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\) nên \(x-2018=0\Leftrightarrow x=2018\)
Bài 2:
\(A=\frac{8^5(-5)^8+(-2)^5.10^9}{2^{16}.5^7+20^8}\) \(=\frac{(2^3)^5(-5)^8+(-2)^5.2^9.5^9}{2^{16}.5^7+(2^2.5)^8}\)
\(=\frac{2^{15}.5^8-2^5.2^9.5^9}{2^{16}.5^7+2^{16}.5^8}\)
\(=\frac{2^{14}.5^8(2-5)}{2^{16}.5^7(1+5)}\)
\(=\frac{5(-3)}{2^2.6}=\frac{-5}{8}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)
Thay vào:
\(\frac{5a+3b}{5a-3b}=\frac{5bt+3b}{5bt-3b}=\frac{b(5t+3)}{b(5t-3)}=\frac{5t+3}{5t-3}\)
\(\frac{5c+3d}{5c-3d}=\frac{5dt+3d}{5dt-3d}=\frac{d(5t+3)}{d(5t-3)}=\frac{5t+3}{5t-3}\)
Do đó: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (đpcm)
Bài 4:
Ta có:
\(A=3+3^2+3^3+3^4+...+3^{100}\)
\(=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+...+3^{97}(1+3+3^2+3^3)\)
\(=3.40+3^5.40+....+3^{97}.40\)
\(=120(1+3^4+....+3^{96})\vdots 120\)
Ta có đpcm.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
a, Ta có: \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)\(\Rightarrow\dfrac{\left(bk-b\right)^2}{\left(ck-c\right)^2}=\dfrac{bk.b}{dk.d}\)
\(\Rightarrow\dfrac{\left[b.\left(k-1\right)\right]^2}{\left[d.\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)
Vậy \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
b, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
\(\Rightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a+3b}{5c+3d}\)
a) Ta có:
+) a/2=b/3
=>a=2b/3
+) b/5=c/4
=>c=4b/5
Lại có:
a-b+c=49
=> 2b/3 -b + 4b/5 =49
=> 7b/15==49
=> b= 105
Khi đó:
+) a=2b/3=2.105/3=70
+)c=4b/5=4.105/5=84
Vậy a=70; b=105; c=84...
chúc bạn học tốt
Ta có:
\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
\(\Leftrightarrow\dfrac{5\left(a-1\right)}{10}=\dfrac{3\left(b+3\right)}{12}=\dfrac{4\left(c-5\right)}{6}\)
\(\Leftrightarrow\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{6}=\dfrac{5a-5-3b+9-4c+20}{10-12-6}\)
\(=\dfrac{46+6}{-26}=-2\)
\(\Rightarrow\dfrac{a-1}{2}=-2\Rightarrow a=-3\)
\(\Rightarrow\dfrac{b+3}{4}=-2\Rightarrow b=-11\)
\(\Rightarrow\dfrac{c-5}{6}=-2\Rightarrow c=-7\)
Vậy ...
Ta có: \(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}\)
\(\Leftrightarrow\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{24}\) (Có sửa đề)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{5a-5}{10}=\dfrac{3b+9}{12}=\dfrac{4c-20}{24}=\dfrac{5a-5-3b-9-4c+20}{10-12-24}=-2\)
Vì \(\dfrac{5a-5}{10}=-2\Rightarrow a=-3\)
\(\dfrac{3b+9}{12}=-2\Rightarrow b=-11\)
\(\dfrac{4c-20}{24}=-2\Rightarrow c=-7\)
Vậy \(\left\{{}\begin{matrix}a=-3\\b=-11\\c=-7\end{matrix}\right..\)