Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét thấy \(a=0\Rightarrow \frac{-b^2}{b^2}=\frac{3}{4}\Leftrightarrow -1=\frac{3}{4}\) (vô lý)
\(b=0\Rightarrow \frac{3a^2}{a^2}=\frac{3}{4}\Leftrightarrow 3=\frac{3}{4}\) (vô lý)
Do đó \(a,b\neq 0\)
Khi đó, đặt \(a=tb\)
Ta có \(\frac{3}{4}=\frac{3a^2-b^2}{a^2+b^2}=\frac{3b^2t^2-b^2}{b^2t^2+b^2}=\frac{b^2(3t^2-1)}{b^2(t^2+1)}=\frac{3t^2-1}{t^2+1}\)
\(\Leftrightarrow 3(t^2+1)=4(3t^2-1)\Leftrightarrow t^2=\frac{7}{9}\)
\(\Rightarrow \frac{a}{b}=t=\pm \sqrt{\frac{7}{9}}\)
\(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
=> \(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)= \(4.\left(3a^2+b^2\right)=3.\left(a^2+b^2\right)\)
=> \(12a^2+4b^2=3a^2+3b^2\)
=> \(12a^2+\left(-3a\right)^2=\left(-4b\right)^2+3b^2\)
=> \(9a^2=-1b^2\)
=> \(\left(\dfrac{a}{b}\right)^2=-\dfrac{1}{9}\)
=> \(\left(\dfrac{a}{b}\right)^2=\left(-\dfrac{1}{9}\right)^{ }\)
=> \(\dfrac{a}{b}=-\dfrac{1}{3}\)
Vậy:..........
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)
Bài 1 :
a, \(-1\dfrac{2}{3}\)= \(\dfrac{-5}{3}\)
Dựa vào tính chất của Tỉ lệ thức :
Ta có : \(\dfrac{x}{y}=\dfrac{-5}{3}\rightarrow\dfrac{x}{-5}=\dfrac{y}{3}\)
Dựa vào tính chất của dãy tỉ số = nhau
Ta có : \(\dfrac{x}{-5}=\dfrac{y}{3}=\dfrac{x+y}{\left(-5\right)+3}=\dfrac{18}{-2}=-9\)
\(\rightarrow\dfrac{x}{-5}=-9\rightarrow x=\left(-5\right).\left(-9\right)\Rightarrow x=45\\ \rightarrow\dfrac{y}{3}=-9\rightarrow y=3.\left(-9\right)\Rightarrow y=-27\)b,
Ta có :
( x + 4 ) . 7 = ( y + 7 ) . 4
\(\rightarrow\) 7x + 28 = 4y + 28
\(\rightarrow\) 7x = 4y
Vì 7x = 4y
\(\Rightarrow\) x = 22 / ( 4 + 7 ) . 7 = 14
\(\Rightarrow\) y = 22 - 14 = 8
Đợi mk lm câu 2 nha
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\dfrac{a}{b}=\dfrac{3a}{3b}\) ; \(\dfrac{c}{d}=\dfrac{2c}{2d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{3a+2c}{3b+2d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{3a+2c}{3b+2d}\)
a: a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)
b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)
c \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)
d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)
\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)
\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)
\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)
d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)
\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)
\(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Rightarrow3\left(a^2+b^2\right)=4\left(3a^2-b^2\right)\)
\(\Rightarrow3a^2+3b^2=12a^2-4b^2\)
\(\Rightarrow-9a^2=-7b^2\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{-7}{-9}=\dfrac{7}{9}\Rightarrow\dfrac{a}{b}=\dfrac{\sqrt{7}}{3}\)
Vậy............