K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Nguyễn NamAkai HarumaNguyễn Thanh HằngRibi Nkok Ngoklê thị hương giangQuang Ho SiAnh TriêtTrần Quốc LộcHàn VũHoàng Thị Ngọc AnhAn Nguyễn BáNguyễn Huy ThắngPhương An

28 tháng 11 2017

sao hăm ai lm zạy nè khó wa ak

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

5 tháng 7 2017

Bài 2:

Bài 1:

\(a^2+b^2+c^2=14\Rightarrow\left(a+b+c\right)^2-2ab-2bc-2ac=14\)\(\Leftrightarrow-2\left(ab+bc+ac\right)=14\Rightarrow ab+bc+ac=-7\)\(\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Ta có:

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2b^2c^2-2a^2c^2\)\(=14^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)=196-2.49=98\)

26 tháng 12 2017

Ta có: \(P=\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)

=> \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=abc\left(\dfrac{1+1+1}{a^3+b^3+c^3}\right)\)

Mà ta lại có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\dfrac{\Rightarrow1}{a^3}+\dfrac{1}{b^3}=\left(\dfrac{1+1}{a+b}\right)^3-3\dfrac{1}{a}.\dfrac{1}{b}\left(\dfrac{1+1}{a+b}\right)\)

\(\Rightarrow-\dfrac{1^3}{c}+\dfrac{3}{abc}\)

\(\Rightarrow\dfrac{1+1+1}{a^3+b^3+c^3}=\dfrac{3}{abc}\)

\(\dfrac{\Rightarrow bc}{c^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=3\)

Vậy : \(P=\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\) = 3

AH
Akai Haruma
Giáo viên
1 tháng 3 2019

Lời giải:

Xét tử :

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}=\frac{a^2}{a^2+bc+(-ab-ac)}+\frac{b^2}{b^2+ac+(-ab-bc)}+\frac{c^2}{c^2+ab+(-bc-ac)}\)

\(=\frac{a^2}{a(a-b)-c(a-b)}+\frac{b^2}{b(b-c)-a(b-c)}+\frac{c^2}{c(c-a)-b(c-a)}\)

\(=\frac{a^2}{(a-c)(a-b)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}\)

\(=\frac{a^2(c-b)+b^2(a-c)+c^2(b-a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Xét mẫu (tương tự bên tử)

\(\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}=\frac{bc}{(a-c)(a-b)}+\frac{ac}{(b-a)(b-c)}+\frac{ab}{(c-a)(c-b)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{(a-b)(b-c)(c-a)}=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(a-b)(b-c)(c-a)}\)

\(=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)

Do đó:

\(A=\frac{1}{1}=1\)

22 tháng 1 2018

Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)

\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)

\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\) 

28 tháng 9 2017

a,Sửa lại đề nha bạn:Tính A = \(\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=\dfrac{bcx+acy+abz}{abc}=0\)

\(\Rightarrow bcz+acy+abz=0\)

(2) \(\Rightarrow\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}+2\left(\dfrac{ab}{xy}+\dfrac{ac}{xz}+\dfrac{bc}{xz}\right)=4\)\(\Rightarrow A=\dfrac{a^2}{x^2}+\dfrac{b^2}{y^2}+\dfrac{c^2}{z^2}=4-2.\left(\dfrac{abz+acy+bcz}{xyz}\right)=4\)b, \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)Tương tự: \(b^2+c^2-a^2=-2bc\)

\(c^2+a^2-b^2=-2bc\)

Vậy \(B=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ac}{-2ac}=\dfrac{-3}{2}\)

12 tháng 3 2017

Cho mình sửa đề một chút thôi nha mình tin chắc là đề bạn sai rồi

Cho a,b,c thỏa mãn : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tính giá trị biểu thức N = \(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

Ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^3=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

Ta lại có :

\(N=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}\)

\(\Leftrightarrow N=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc\times\dfrac{3}{abc}=3\)

Chúc bạn học tốt =))ok

12 tháng 3 2017

bc/a^2 + ac/b^2 + ab/c^2=abc(1/a^3 + 1/b^3 + 1/c^3)
mà 1/a + 1/b + 1/c = 0
=> 1/a + 1/b=-1/c
=> 1/a^3+1/b^3 = (1/a+1/b)^3 - 3.1/a.1/b(1/a+1/b) = -1/c^3 + 3.1/(abc)
=> 1/a^3 + 1/b^3 + 1/c^3=3/(abc)
=> bc/a^2 + ac/b^2 + ab/c^2=3.

AH
Akai Haruma
Giáo viên
25 tháng 11 2018

Lời giải:

a) Vì $abc=1$ nên ta có:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{ac}{abc.+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}=\frac{ac+1+c}{ac+c+1}=1\)

(đpcm)

b)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow \left\{\begin{matrix} x=ka\\ y=kb\\ z=kc\end{matrix}\right.\)

\(x+y+z=ka+kb+kc=k(a+b+c)=k\)

\(x^2+y^2+z^2=k^2a^2+k^2b^2+k^2c^2=k^2(a^2+b^2+c^2)=k^2\)

\(\Rightarrow A=xy+yz+xz=\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}=\frac{k^2-k^2}{2}=0\)