Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:
\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).
\(\widehat{BCA}\)chung.
\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).
b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:
\(\widehat{KBC}\)chung.
\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).
\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).
\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).
\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).
+ Ta có
MN//BC => BMNC là hình thang (theo định nghĩa)
Ta m giác ABC cân tại A => ^ABC = ^ACB
=> BMNC là hình thang cân
+ Xét tam giác MBI có
^MIB = ^IBC (góc so le trong) (1)
^IBC = ^IBM (BI là phân giác ^B) (2)
Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)
+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)
Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)
b) Ta có: DE//BC ( BDCE là hình thang )
=> DI, IE//BC
Ta có: DI//BC (cmt)
=> Góc CBI = góc DIB ( cặp góc so le trong )
Mà góc DBI = góc CBI ( BI là tia phân giác của góc B)
=> Góc DIB = góc DBI
=> DB = DI ( quan hệ giữa góc và cạnh đối diện) (1)
Ta có: IE//BC ( đã cm ở đầu bài)
=> Góc EIC = góc BCI ( cặp góc so le trong)
Mà góc ECI = góc BCI (CI là tia phân giác của góc C)
=> Góc EIC = góc ECI
=> EI = EC ( quan hệ giữa góc và cạnh đối diện) (2)
Từ (1) và (2) => DE = DB + EC
=> Đáy DE trong hình thang BDEC bằng tổng 2 cạnh bên.