K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Bạn tự vẽ hình nha 

Bài giải 

a, Ta có : Tổng 3 trong một tam giác bằng 1800

=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)

\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)

\(\Rightarrow\widehat{A}=80^0\)

Mặt khác : tia phân giác của góc A cắt ABC tại D

\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)

Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)

\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)

\(\Rightarrow\widehat{ADC}=110^0\)

bn nào có thể giải câu b giúp mk được ko.

15 tháng 8 2017

Ta có

góc ADC=góc DAB+ góc B (theo tính chất góc ngoài của tam giác)

góc ADB= góc DAC + góc C

=> góc ADC- góc ADB=góc B+ góc DAB-(góc C+ góc DAC) 

Vì AD là tia phân giác của góc A

=> góc DAB= góc DAC

=>góc ADC- góc ADB=gocsB-góc C=40 độ

mà góc ADC và góc ADB là 2 góc kề bù

=> góc ADC+góc ADB=180 độ

=> góc ADC=(180 độ +40 độ):2=110 độ 

KL

a: \(\widehat{BAC}=180^0-70^0-30^0=80^0\)

=>\(\widehat{CAD}=40^0\)

\(\widehat{ADC}=180^0-40^0-30^0=110^0\)

b: \(\widehat{B}-\widehat{C}=40^0\)

nên \(\widehat{B}=\widehat{C}+40^0\)

Ta có: \(\widehat{ABD}+\widehat{ADB}+\widehat{BAD}=\widehat{ACD}+\widehat{ADC}+\widehat{CAD}\)

\(\Leftrightarrow\widehat{C}+40^0+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}-\widehat{ADC}=-40^0\)

mà \(\widehat{ADB}+\widehat{ADC}=180^0\)

nên \(-2\cdot\widehat{ADC}=\dfrac{-40^0-180^0}{2}=-110^0\)

hay \(\widehat{ADC}=55^0\)

24 tháng 10 2018

A B C K I 1 2 1 2 3 4

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}=110^o\)

\(\hept{\begin{cases}\widehat{B_2}=\frac{1}{2}\widehat{B}\\\widehat{C_1}=\frac{1}{2}\widehat{C}\end{cases}\Rightarrow\widehat{B_2}+\widehat{C_1}=\frac{1}{2}.110^o=55^o\Rightarrow\widehat{BIC}=180^o-\left(\widehat{B_2}+\widehat{C_1}\right)=125^o}\)

Ta có: \(\widehat{C_2}+\widehat{C_3}+\widehat{C_1}+\widehat{C_4}=180^o\)

\(\hept{\begin{cases}\widehat{C_1}=\widehat{C_2}\\\widehat{C_3}=\widehat{C_4}\end{cases}\Rightarrow\widehat{C_2}+\widehat{C_3}=\frac{180^o}{2}=90^o\Rightarrow\widehat{ICK}=90^o}\)

Suy ra \(\widehat{BIC}=\widehat{ICK}+\widehat{BKC}\Rightarrow\widehat{BKC}=125^o-90^o=35^o\)