K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Góc A1 + A2 = Goc B + C.

Do Am là tia phân giác ngoài tại đỉnh A nên A1 = A2.

=> Tam giác cân ABC tai A nên góc B = C.

Suy ra : Góc A1 + A1 = Góc C + C

=> Góc A1 = C mà hai góc này nằm ở vị trí so le trong

Do đó : Am // BC.

tam giác ABC có: góc B+ góc C  góc BAC = 1800

        => 500 + 500 + góc BAC = 1800

=> góc BAC = 1800 - (500+500) = 800

góc BAn = 1800 - góc BAC = 1800 - 800 = 1000 (do góc BAn là góc ngoài tam giác)

=> góc mAB = \(\frac{BAn}{2}=\frac{100^0}{2}=50^0\) (do Am là p/g của góc BAn)

=> góc mAB = góc ABC = 500 mà chúng ở vị trí SLT => Am//BC (đccm)

chúc pn học tốt!! 458437687486826765276843975849784596783685843576235

18 tháng 8 2021

a: Ta có: ˆABD=ˆBAMABD^=BAM^

ˆDBC=ˆAMBDBC^=AMB^

mà ˆABD=ˆDBCABD^=DBC^

nên ˆBAM=ˆAMB

28 tháng 11 2021

Answer:

A) Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}\)

\(\Rightarrow\widehat{A}=180^o-100^o=80^o\)

\(\Rightarrow\widehat{DAC}=\frac{\widehat{A}}{2}=40^o\)

B) Ta có: \(\widehat{ADC}=\widehat{B}+\frac{1}{2}\widehat{A}\)

\(=\widehat{A}+\widehat{B}+\widehat{B}\)

\(=180^o-\widehat{C}+\widehat{B}\)

\(=180^o-\left(\widehat{B}-\widehat{C}\right)=140^o\)

17 tháng 2 2020

b, Dễ cm dc t/g MCK = t/g ACK (c.g.c)

=> góc CMK = góc CAK (2 góc t/ứ) (1)

t/g BAN cân => góc BAN = góc BNA (2)

Ta có: góc BAN + góc CAK = góc BAC = 90 độ (3)

từ (1),(2),(3) => góc BNA + góc CMK = 90 độ hạy góc MKN = 90 

=> MK _|_ AN mà BD _|_ AN (câu a)

=> MK//BD

29 tháng 6 2017

a) \(\widehat{BOx}=\widehat{B}\left(=50\text{°}\right)\)

mà \(\widehat{BOx}\) và \(\widehat{B}\) là 2 góc SLT

\(\Rightarrow Ox\text{∥}BC\) (dấu hiệu nhận biết 2 đường thẳng song song)

b) \(\widehat{BAC}+\widehat{OAC}=180\text{°}\) (2 góc kề bù)

Thay số: \(80\text{°}+\widehat{OAC}=180\text{°}\)

\(\widehat{OAC}=100\text{°}\)

AI là tia phân giác của \(\widehat{OAC}\) (giả thiết)

\(\Rightarrow\widehat{OAI}=100\text{°}\div2=50\text{°}\)

\(\Rightarrow\widehat{OAI}=\widehat{B}\left(=50\text{°}\right)\)

mà \(\widehat{OAI}\) và \(\widehat{B}\) là 2 góc đồng vị

\(\Rightarrow AI\text{∥}BC\) (dấu hiệu nhận biết 2 đường thẳng song song)

13 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta ACM\)có: AB = AC (gt)

Cạnh AM chung

BM = MC (M là trung điểm của BC)

=> \(\Delta ABM\)\(\Delta ACM\)(c. c. c) (đpcm)

b) \(\Delta ABM\)và \(\Delta ECM\)có:

BM = CM (M là trung điểm của BC)

\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

AM = EM (gt)

=> \(\Delta ABM\)\(\Delta ECM\)(c. g. c) (đpcm)

c) Ta có \(\Delta ABM\)\(\Delta ACM\)(cm câu a) => \(\widehat{AMB}=\widehat{AMC}\)(hai góc tương ứng)

và \(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)

=> \(\widehat{AMC}=\widehat{EMC}\)

\(\Delta ACM\)và \(\Delta ECM\)có: Cạnh MC chung

\(\widehat{AMC}=\widehat{EMC}\)(cm trên)

AM = EM (gt)

=> \(\Delta ACM\)\(\Delta ECM\)(c. g. c)

=> \(\widehat{ACM}=\widehat{ECM}\)(hai góc tương ứng)

=> CB là tia phân giác của \(\widehat{C}\)(đpcm)

13 tháng 12 2017

a) xét tam giác ABM và tam giác ACM

    có: AB = AC (giả thiết)

          BM =CM(giả thiết)

          AM chung

    do đó tam giác ABM = tam giác ACM(c-c-c)

b)xét tam giác ABM và tam giác ECM

Có: BM =CM (gt)

      góc AMB = góc EMC(2 góc đối đỉnh)

      AM = EM(gt)

  do đó tam giác ABM = tam giác ACM(c-g-c)

  suy ra góc ECM = góc ABM(hai góc tương ứng)

  mà góc ECM và góc ABM là hai góc so le trong 

  suy ra EC song song với AB(điều cần chứng minh)

c)VÌ tam giác ABM = tam giác ACM(chứng minh trên) và tam giac ABM cũng = tam giác ECM

nên tam giác ACM = tam giác ECM

 suy ra:góc ACM = góc ECM (hai góc tương ứng)

suy ra :CB là tia phân giác của góc C

2 tháng 10 2016

ta có: IB là tia pg góc B,IC là tia pg góc C \(\Rightarrow\) I là giao của 2 đường pg

mà AI đi qua giao của 2 đường pg\(\Rightarrow\) AI là tia pg góc A