\(\Delta\)ABC cân tại A, đường cao BH,CK  giao nhau tại I 

a) chứng minh BK = C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a) Xét tam giác vuông BKC và tam giác vuông CHB có:

\(\widehat{BKC}=\widehat{CHB}=90^o\)

Cạnh BC chung

\(\widehat{KBC}=\widehat{HCB}\)  (Do tam giác ABC cân)

\(\Rightarrow\Delta BKC=\Delta CHB\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow BK=CH\)  (Hai cạnh tương ứng)

b) Do tam giác ABC cân tại A nên AB = AC. Lại có theo câu a thì BK = CH.

Suy ra AK = AB - BK = AC - CH = AH

Vậy AK = AH hay tam giác AKH cân tại A.

c) Do tam giác ABC cân tại A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)

Tam giác AKH cũng cân tại A nên \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)

Suy ra \(\widehat{ACB}=\widehat{AHK}\). Chúng lại ở vị trí đồng vị nên KH // BC.

Vậy nên KHCB là hình thang.

d) Xét tam giác KBN và tma giác HCM có :

KB = HC (cma)

BN = CM (gt)

\(\widehat{KBN}=\widehat{HCM}\)  (gt)

\(\Rightarrow\Delta KBN=\Delta HCM\left(c-g-c\right)\)

\(\Rightarrow\widehat{KNB}=\widehat{HMC}=90^o\)

Vậy \(KN\perp BC.\)

17 tháng 7 2018

em cảm ơn ạh

1 tháng 8 2018

a) Xét tam giác vuông BAC và tam giác vuông DAC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta BAC=\Delta DAC\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}\)

\(\Rightarrow\) CA là tia phân giác góc \(\widehat{BCD}.\)

b) Xét tam giác vuông IFC và tam giác vuông IEC có:

Cạnh IC chung

\(\widehat{FCI}=\widehat{ECI}\)

\(\Rightarrow\Delta IFC=\Delta IEC\)  (Cạnh huyền-góc nhọn)

\(\Rightarrow CE=CF\)

Vậy tam giác CEF cân tại C.

Gọi giao điểm của IC và EF là J. Ta dễ thấy \(\Delta JFC=\Delta JEC\left(c-g-c\right)\Rightarrow\widehat{FJC}=\widehat{EJC}=90^o\)

Vậy thì EF//BD hay BFED là hình thang.

Lại có \(\Delta BAC=\Delta DAC\Rightarrow\widehat{FBD}=\widehat{EDB}\)

Vậy nên BFED là hình thang cân.

c) Ta có ngay IE = IF, mà IF là đường vuông góc nên luôn nhỏ hơn hoặc bằng đường xiên IB.

Vậy nên \(IE\le IB\)

19 tháng 8 2018

bạn vào link https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d Tham gia trả lời câu hỏi để nhận được những phần quà hấp dẫn đến từ Alfazi như: xu, balo, áo, giày,... và các dụng cụ học tập khác nhé

Rồi bạn trả lời"được bạn My Love mời"cám ơn bn

19 tháng 8 2018

1 giờ trước (16:33)

Các bạn copy rồi vào link: https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d

Sau đó đăng ký rồi trả lời câu hỏi ở link đó sau đó các bạn xuống dòng và viết " Được bạn My Love mời "

Kết quả sẽ công bố vào 21h tối nay nên mk nhờ m.n giúp mk mk đang cần 40 bạn tham gia nếu bạn nào giúp mk và mk đạt được mk sẽ gửi phần quà cho các bạn 

Ai muốn tham gia hoặc có thắc mắc gì thì nhắn tin cho mk và kb để có thể biết nhiều thông tin hơn còn đây là link trang cá nhân của mk: https://alfazi.edu.vn/profile/5b77e1d19c9d707fe57235ec và các bạn muốn tham gia hãy giới thiệu với bạn bè của bạn bài đăng của mk.

Mong m.n giúp đỡ mk xin chân thành cảm ơn!

31 tháng 1 2018

A B C I H K

a)

_ Xét \(\Delta\) AKC và \(\Delta\) AHI có :

+ góc AKC = gócÂHB = 90o

+ A là góc chung

+ AB = AC ( gt )

=> \(\Delta\)AHB = \(\Delta\) AKC ( g.c.g)

=> AH = AK ( đpcm )

b)

_ Xét \(\Delta\) AKI và \(\Delta\) AHI có

+ góc AKI = góc AHI = 900

+ AH = AK ( c/m trên )

+ AI là cạnh chung

=> \(\Delta\) AKI = \(\Delta\) AHI ( cạnh huyền - cạnh góc vuông )

=> góc KAI = gócHAI ( 2 góc tương ứng )

c)

_ Xét \(\Delta\) ABD và \(\Delta\) ACD có :

+ AB = AC ( gt )

+ AD chung

+ góc ADB = góc ACD = 90o

=> \(\Delta\)ABD = \(\Delta\) ACD ( cạnh huyền - cạnh góc vuông )

=> AI \(\perp\) BC

Còn lại k biết lm

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

28 tháng 6 2020

a.Xét tam giác AMH và tam giác NMB có 

          MA = MN [ gt ]

         góc AMH = góc NMB [ đối đỉnh ]

         HM = BM [ gt ]

Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]

\(\Rightarrow\)góc AHM = góc NBM 

mà bài cho góc AHM = 90độ

\(\Rightarrow\)góc NBM = 90độ

Vậy NB vuông góc với BC 

b.Theo câu a ; tam giác AMH = tam giác NMB 

\(\Rightarrow\)AH = NB [ cạnh tương ứng ]

Mặt khác ; Xét tam giác AHB vuông tại H có 

AB lớn hơn AH 

\(\Rightarrow\)AB lớn hơn NB 

17 tháng 3 2021

à há lllllllo bạn

17 tháng 3 2021

a) Xét tg ABH và ACK có :

AB=AC(tg ABC cân tại A)

\(\widehat{A}-chung\)

\(\widehat{AHB}=\widehat{AKC}=90^o\)

=> Tg ABH=ACK(cạnh huyền-góc nhọn) (đccm)

b) Do tg ABH=ACK (cmt)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Mà : \(\widehat{ABC}=\widehat{ACB}\)(tg ABC cân tại A)

\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)

=> Tg OBC cân tại O

=> OB=OC (đccm)

c) Do : AB=AC (tg ABC cân tại A)

MB=NC(gt)

=> AB+BM=AC+CN

=> AM=AN

=> Tg AMN cân tại A

\(\Rightarrow\widehat{M}=\widehat{N}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

- Do tg ABH=ACK (cmt)

=> AK=AH

=> Tg AKH cân tại A

\(\Rightarrow\widehat{AKH}=\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

- Từ (1) và (2) \(\Rightarrow\widehat{M}=\widehat{AKH}\)

Mà chúng là 2 góc đồng vị

=> KH//MN (đccm)

#H