Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMAB và ΔMEC có
MA=ME(gt)
ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMEC(c-g-c)
cậu không giải bài giúp tôi thì cũng đừng cmt như thế
A B F E C M H
Cm: a) Xét t/giác ABM và t/giác ECM
có BM = CM (gt)
góc AMB = góc CME (đối đỉnh)
AM = EM (gt)
=> t/giác ABM = t/giác ECM (c.h.c)
b) Ta có: t/giác ABM = t/giác ECM (cmt)
=> AB = EC (1) (hai cạnh tương ứng)
Mà HF = AH (gt)
=> BF = AB (2) (Quan hệ giữa đường xiên và hình chiếu)
Từ (1) và (2) suy ra BF = CE (Đpcm)
c) Ta có: AB < AC (gt)
=> góc ACB < góc ABC (Quan hệ giữa góc và cạnh đối diện)
hay góc ACM < góc ABM (3)
Mà t/giác ABM = t/giác ECM (cm câu a)
=> góc ABM = góc MCE (4) (hai góc tương ứng)
Từ (3) và (4) suy ra góc ACM < MCE (Đpcm)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a) Xét ΔABM và ΔECM có
BM=CM(AM là trung tuyến)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
AM=EM(gt)
Do đó: ΔABM=ΔECM(c-g-c)
b) Ta có: ΔABM=ΔECM(cmt)
⇒AB=EC(hai cạnh tương ứng)(1)
Xét ΔBHA vuông tại H và ΔBHF vuông tại H có
HA=HF(gt)
BH chung
Do đó: ΔBHA=ΔBHF(hai cạnh góc vuông)
⇒AB=FB(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra BF=CE(đpcm)
c) Ta có: ΔABM=ΔECM(cmt)
⇒\(\widehat{ABM}=\widehat{ECM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{ECM}\)(3)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là \(\widehat{ACB}\)
và góc đối diện với cạnh AC là \(\widehat{ABC}\)
nên \(\widehat{ACB}< \widehat{ABC}\)(định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ACM}< \widehat{ABC}\)(4)
Từ (3) và (4) suy ra \(\widehat{ACM}< \widehat{ECM}\)(đpcm)