Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
A B C D E F
Ta có tan giác BAD=tam giác BED(ch-gn)
=>BA=BE (tương ứng)
Vậy B cach đều hai đều mút của đoạn thẳng AE
=>BD là trung trực của AE
b)Từ a có tam giác BAD=BED
=>AD=DE(tương ứng)
Vậy ta có tam giác ADF=EDC (cgv-gnk)
=>DC=DF(tương ứng)
c) trong tam giac vuông ADF có AD< DF(vì FD là cạnh huyền và là cạnh lớn nhất trong tam giác vuông)
Mà theo câu b ta có DF=DC
NÊN => AD<DC
=>
a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
BD:cạnh chung; góc ABD= góc EBD(gt)
Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)
=> AB=EB; AD=ED(cặp cạnh tương ứng)
Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE(đpcm)
b, Xét tam giác ADF và tam giác EDC ta có:
góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)
Do đó tam giác ADF=tam giác EDC(g.c.g)
=> DF=DC(cặp cạnh tương ứng) (đpcm)
c, Xét tam giác DEC vuông tại E ta có:
DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)
mà DE=DA=> DA<DC(đpcm)
d, Vì tam giác ADF=tam giác EDC(cm câu b)
=> AF=EC(cặp cạnh tương ứng)
Ta có: BF=BA+AF; BC=BE+EC
mà BA=BE;AF=EC(đã cm)
=> BF=BC
=> tam giác BCF cân tại B
mặc khác ta có: BA=BE(cm câu a)
=> tam giác ABE cân tại B
Xét tam giác BCF và tam giác ABE cân tại B ta có:
góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)
=> góc BAE=góc BFC
=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)
a) Xét tam giác ABD vuông tại A và tam giác BED vuông tại E ta có
BD=BD ( cạnh chung)
góc ABD= góc EBD ( BD là tia phân giác góc ABC)
->tam giác ABD = tam giac BED ( ch-gn)
> BA=BE ; DA=DE ( 2 cạnh tương ứng)
ta có
BA=BE (cmt)
DA=DE(cmt)
-> B,D thuộc đường trung trực của AE
-> BD là đường trung trực của AE
b) Xét tam giác ADF và tam giác EDC ta có
DA=DE (cmt)
goc DAF=góc DEC (=90)
goc ADF= goc EDC ( 2 góc đối đỉnh)
=> tam giac ADF = tam giac EDC (g-c-g)
-> DF= DC (2 cạnh tương ứng)
c) từ điểm D đến đường thẳng EC ta có
DE là đường vuông góc (DE vuông góc BC)
DC là đường xiên
-> DE <DC (quan hệ đường xiên đường vuông góc)
mà DA=DE (cmt)
nên DA<DC
d) ta có
AB=BE (cm 1)
AF=EC ( tam giác ADF= tam giác EDC)
-> AB+AF=BE+EC
-> BF=BC
-> tam giác BEC cân tại B
Xét tam giác ABE ta có
BA= BE (cm1)
-> tam giac ABE cân tại B
ta có
góc BAE = (180-góc ABE):2 ( tam giác ABE cân tại B)
goc BFC=(180-góc FBC):2 ( tam giác BFC cân tại B)
-> góc BAE = góc BFC
mà 2 góc nẳm ở vị trí đồng vị nên AE//FC
a) Xét \(\Delta\)BDA và \(\Delta\)BDE:
BAD^ = BED^
BD chung
ABD^ = EBD^
=> \(\Delta\)BDA = \(\Delta\)BDE (cạnh huyền_góc nhọn)
=> BA = BE (2 cạnh tương ứng) => B nằm trên đường trung trực của AE
=> DA = DE (2 cạnh tương ứng) => D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE
b) Xét \(\Delta\)ADF và \(\Delta\)EDC:
DAF^ = DEC^ = 90o
DA = DE
ADF^ = EDC^
=. \(\Delta\)ADF = \(\Delta\)EDC (cạnh góc vuông _ góc nhọn)
=> DF = DC (2 cạnh tương ứng)
c) Ta có: AD là cạnh góc vuông của \(\Delta\)vuông ADF
DF là cạnh huyền của \(\Delta\)vuông ADF
=> AD < DF
Mà DF = DC (cmt)
=> AD < DC
d) \(\Delta\)ADF = \(\Delta\)EDC (cmt)
=> AF = EC (2 cạnh tương ứng)
Ta có: BF = AB + AF
BC = EB + EC
Mà AB = EB (cmt)
=> BF = BC
Xét \(\Delta\)FBD và \(\Delta\)CBD:
BF = BC (cmt)
FBD^ = CBD^
BD chung
=> \(\Delta\)FBD = \(\Delta\)CBD (c.g.c)
=> BDF^ = BDC^ (2 góc tương ứng)
mà BDF^ + BDC^ = 180o (kề bù)
2*BDF^ = 180o
BDF^ = 90o
=> BD _|_ FC
mà BD _|_ AE
=> FC // AE
Ok! Hình bạn tự túc.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trực của AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC
c; AD=DE
DE<DC
=>AD<DC
d: BA/AF=BE/EC
=>AE//FC