\(\Delta ABCvgtạiA\) .Có đg cao AH .Gọi M,N ll là hình chiếu của H trên AB 

a.T...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2021

tui chịuleuleu

29 tháng 5 2020

A B C H 1 2

a) Xét tam giác ABC và tam giác HBA có:

\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)

b) Vì tam giác BHA  vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)

Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)

(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)

Xét tam giác HBA và tam giác HAC có:

\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)

\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow AH^2=BH.CH\)(5)

c)  Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)

Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)

\(\Rightarrow AH=4,8\)(cm)

Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)

\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)

\(\Rightarrow HB=3,6\)(cm)

Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)

29 tháng 5 2020

phần d viết lại cậu ơi

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .1) C/m M, N lần lượt là trung điểm của AD và BC.2) tứ giác EFQP là hình gì ?3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại...
Đọc tiếp

bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .

1) C/m M, N lần lượt là trung điểm của AD và BC.

2) tứ giác EFQP là hình gì ?

3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm

4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)

bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.

2) AM = MN = NC .

3) 2EN = DM + BC .

4)\(S_{ABC}=3S_{AMB}\)

bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.

1) C/m E ,F ,I thẳng hàng .

2) tính \(S_{ABCD}\)

3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)

bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng

2) tính EF≤ AB+CD / 2

3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2

0