K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2021

a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp

\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)

\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)

\(=AH^2.AC=AF.AC.AC=AF.AC^2\)

c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)

\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)

\(\Rightarrow AH^3=BC.BE.CF\)

Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)

Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)

\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

1 tháng 8 2019

A B C H E F

a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC

\(AB.BE=BH^2;AC.CF=CH^2\)

\(AB^2=BH.BC;AC^2=CH.BC\)

=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)

<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)

<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)

<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)

<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng

Vậy ta có điều phải chứng minh là đúng

b) 

Ta có: \(AH^2=BH.CH\)

=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)

=> \(AH^3=BC.BE.CF\)

c)   

Xét tam giác vuông BEH và tam giác vuông HFC

có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC

=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)

=> \(AH^3=BC.HE.HF\)

19 tháng 10 2017

a) Xét tg ABC vg tại A

Ta có: BC = √AB2 + AC2 = √ 82 + 62 = 10 cm (Pytago)

Áp dụng tỉ số lượng giác trong tg vg

Ta có: AH = AB.AC / BC = 8 . 6 / 10 = 4,8 cm

Ta có sinC = AB / BC = 8 / 10

=> C = 53o7'

20 tháng 10 2017

mink cần ý b vs c thôi nhéhaha