K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

A C B M H E D O I

Cm: a) Ta có: BA \(\perp\)AC (gt)

                        HD // AB (gt)

=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)

Ta lại có: AC \(\perp\)AB (gt)

   HE // AC (gt)

=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)

Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)

=> AEHD là HCN => AH = DE

b) Gọi O là giao điểm của AH và DE

Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)

Xét t/giác ABC vuông tại A có AM là đường trung tuyến

-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)

  \(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)

=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2) 
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)

Gọi I là giao điểm của MA và ED

Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)

hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)

=> \(AM\perp DE\)(Đpcm)

c) (thiếu đề)

2 tháng 4 2018

easy như 1 trò đùa

29 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc MCA

Ta có: ADHE là hình chữ nhật

nên góc AED=góc AHD=góc ABC

=>góc AED+góc MAC=90 độ

=>AM vuông góc với DE

c: Để AM=DE thì M trùng với H

=>ΔABC cân tại A

=>AB=AC

Y
30 tháng 5 2019

c) + ΔHBA ∼ ΔABC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH^2\cdot BC^2=AB^2\cdot AC^2\)

\(\Rightarrow AH^2\left(AB^2+AC^2\right)=AB^2\cdot AC^2\)

\(\Rightarrow\frac{AB^2+AC^2}{AB^2\cdot AC^2}=\frac{1}{AH^2}\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)

23 tháng 5 2018

A B C H E D a)Xét tam giác HAC và tam giác ABC có :

Góc AHC = góc BAC ( = 90o)

Góc BCA chung

⇒ Tam giác HAC ~ Tam giác ABC ( TH3 )

b) Xét tam giác AHD và tam giác ABH có :

Góc HAB chung

Góc ADH = Góc AHB ( = 90o)

⇒ Tam giác AHD ~ Tam giác ABH ( TH3)

\(\dfrac{AH}{AB}=\dfrac{AD}{AH}\)

⇒ AH2 = AB.AD

c) Xét tam giác AEH và tam giác AHC có :

Góc HAC chung

Góc AEH = góc AHC ( = 90o)

⇒ Tam giác AEH ~ Tam giác AHC ( TH3)

\(\dfrac{AE}{AH}=\dfrac{AH}{AC}\)

⇒ AH2 = AE.AC

Mà : AH2 = AD.AB ( Câu b)

⇒ AE.AC = AD.AB

d) Do : AE.AC = AD.AB ( Câu c)

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)

Xét tam giác AED và tam giác ACB có :

Góc BAC chung

\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\) ( cmt)

⇒Tam giác AED ~ Tam giác ACB ( TH2)

\(\dfrac{S_{AED}}{S_{ACB}}=\left(\dfrac{AE}{AC}\right)^2\)

P/S : Hình như thiếu dữ kiện , chưa cho AH nên ko ra số cụ thể

22 tháng 5 2018

â)xét tam giác hac và tam giác abc có:

​góc c chung

góc ahc= góc bac=90 độ

​suy ra tam giác hac đồng dạng với tam giác abc(g.g)

b)xét tam giác ahb và tam giác adh có

góc ahb= góc adh=90 độ

góc a chung

suy ra tam giác ahb đồng dạng với tam giác adh(g.g)

ta có:ah^2=ab.ad