Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D x y M N H G Q Q' K
A, tam giác AOC vuông tại A
=> góc ACO + góc COA = 90 (đl) (1)
có góc COA + góc COD + góc DOB = 180
có góc COD = 90 (gt)
=> góc COA + góc DOB = 90 ; (1)
=> góc ACO = góc DOB
xét tam giác ACO và tam giác BOD có : góc CAO = góc OBD = 90 (gt)
=> tam giác ACO ~ tam giác BOD (g-g)
=> AC/BO = AO/BD
=> AO.BO = AC.BD
Có O là trung điểm của AB (gt) => AO = OB = 1/2AB
=> 1/2.AB.1/2.AB = AC.BD
=> 1/4AB^2 = AC.BD
=> AB^2 = 4AC.BD
b, tam giác CAO ~ tam giác OBD (Câu a)
=> AC/OB = OC/OD
OA = OB (Câu a)
=> AC/OA = OC/OD
=> AC/OC = OA/OD
=> tam giác ACOO ~ tam giác OCD
=> góc ACO = góc OCD
mà CO nằm giữa CA và CD
=> CO là phân giác của góc ACD (đn)
tự chứng minh AC = CM
c, xét tam giác AMB có : MO là đường trung tuyến (O là trung điểm của AB)
MO = AB/2 (OM = OA do tam giác AOC = tam giác MOC(câu b) và OA = AB/2)
=> tam giác AMB vuông tại M (định lí đảo)
=> AM _|_ NB (1)
xét tam giác ACM có : AC = CM (Câu b)
=> tam giác ACM cân tại C (đn) MÀ có CO là phân giác
=> CO là đường cao của tam giác ACM (đl)
=> CO _|_AM (2)
(1)(2) => CO // BN (tc)
xét tam giác BAN có : O là trung điểm của AB (gt)
=> C là trung điểm của AN (tc)
d, gọi BC cắt MH tại Q
có MH // AN do cùng _|_ BA
xét tam giác BCN và tam giác BCA
=> QM/CN = BQ/BC và QH/CA = BQ/BC (hệ quả)
có CN=CA (câu c)
=> MQ = QH ; Q nằm giữa H và M
=> Q là trung điểm của HM (đn)
kẻ AM cắt BD tại G; Kẻ OK _|_ AB (K nằm cùng 1 nửa mp bờ AB chứa Ax, By)
dài chẳng làm nữa
Nghe nói full là bạn ấy sẽ rep đúng hong Hằng :<
\(a+b-c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=c\\b=c-a\\2c-2b=2a\end{matrix}\right.\)
\(PHUCDZ=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\dfrac{b^2}{\left(b-a\right)\left(b+a\right)-c^2}+\dfrac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
\(=\dfrac{a^2}{c\left(a-b\right)-c^2}+\dfrac{b^2}{c\left(b-a\right)-c^2}+\dfrac{c^2}{b\left(c+a\right)-b^2}\)
\(=\dfrac{a^2}{c\left(a-b-c\right)}+\dfrac{b^2}{c\left(b-a-c\right)}+\dfrac{c^2}{b\left(c+a-b\right)}\)
Mặt khác: \(a+b-c=0\Leftrightarrow\left\{{}\begin{matrix}a-b-c+2b=0\Leftrightarrow a-b-c=-2b\\b-a-c+2a=0\Leftrightarrow b-c-a=-2a\\c+a-b-2c+2b=0\Leftrightarrow c+a-b=2c-2b=2a\end{matrix}\right.\)
Thay vào: \(PDZ=\dfrac{a^2}{-2bc}+\dfrac{b^2}{-2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3}{-2abc}+\dfrac{b^3}{-2abc}-\dfrac{-c^3}{-2abc}\)
\(=\dfrac{a^3+b^3-c^3}{-2abc}\)
Ta có: \(a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-c^3=0\)
\(\Leftrightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)
\(PDZ=\dfrac{a^3+b^3-c^3}{-2abc}=\dfrac{-3ab\left(a+b\right)}{-2abc}=\dfrac{-3abc}{-2abc}=?????\)
A B C K H I D U V E F
Gọi giao điểm của Ax với cạnh BC là V, trung trực của BC cắt AC,BC lần lượt tại H,F
Phân giác ^BAK cắt BH tại U. Trung trực của BH cắt BH và AU lần lượt tại E và I
Từ giả thiết ta có ^ABC = 2.^ACB. Do H thuộc trung trực của BC nên ^HBC = ^HCB = ^ACB
=> ^ABC = 2.^HBC hay ^ABH = ^ACB. Từ đó \(\Delta\)AHB ~ \(\Delta\)ABC (g.g)
Dễ thấy ^BAU = ^CAV = ^BAC/3, ^ABU = ^ACV => \(\Delta\)AUB ~ \(\Delta\)AVC (g.g)
Do đó \(\frac{BU}{CV}=\frac{AB}{AC}=\frac{BH}{CB}=\frac{BE}{CF}=\frac{BU-BE}{CV-CF}=\frac{EU}{FV}\)
Cũng dễ có \(\Delta\)IEU ~ \(\Delta\)KFV (g.g) => \(\frac{EU}{FV}=\frac{IU}{KV}\). Suy ra \(\frac{BU}{CV}=\frac{IU}{KV}\)
Kết hợp với ^IUB = ^KVC (^AUB = ^AVC) dẫn tới \(\Delta\)BIU ~ \(\Delta\)CKV (c.g.c)
=> ^IBU = ^KCV hay ^IBH = ^KCB. Mà hai tam giác BIH và BKC cân tại I và K nên \(\Delta\)BIH ~ \(\Delta\)BKC
Từ đây \(\Delta\)BIK ~ \(\Delta\)BHC (c.g.c). Có \(\Delta\)BHC cân tại H => \(\Delta\)BIK cân tại I
Nếu ta lấy một điểm D sao cho ^BID = ^IKA, ^IBD = ^KIA thì \(\Delta\)IBD = \(\Delta\)KIA (g.c.g)
=> ^BDI = ^IAK = ^IAB => Từ giác AIBD nội tiếp. Đồng thời có AI = BD nên AIBD là hình thang cân
=> AB = DI. Mà DI = AK (vì \(\Delta\)IBD = \(\Delta\)KIA) nên AB = AK => \(\Delta\)BAK cân tại A
=> ^AKB = (1800 - ^BAK)/2 = \(\frac{180^0-2\alpha}{2}=90^0-\alpha=90^0-\frac{180^0-3\beta}{3}=30^0+\beta\)
Vậy \(\widehat{AKB}=90^0-\alpha=30^0+\beta\).