Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)
\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)
M là trung điểm của BC (gt) nên MB = MC
AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)
\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)
\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)
A B M C H K
a) Xết hai tam giác vuông AMH và AMK có:
AM: cạnh huyền chung
\(\widehat{HAM}=\widehat{KAM}\left(gt\right)\)
Vậy: \(\Delta AMH=\Delta AMK\left(ch-gn\right)\)
Suy ra: MH = MK (hai cạnh tương ứng)
b) Xét hai tam giác vuông MHB và MKC có:
MB = MC (gt)
MH = MK (cmt)
Vậy: \(\Delta MHB=\Delta MKC\left(ch-cgv\right)\)
Suy ra: \(\widehat{B}=\widehat{C}\) (hai góc tương ứng).
a) Theo đề bài, vì đường thẳng đi qua M cắt BC tại N => MN // AB => \(\widehat{BMN}=\widehat{ABM}\left(so-le-trong\right)\left(1\right)\)
Vì BM là tia phân giác của \(\widehat{B}\)=> \(\widehat{ABM}=\widehat{MBN}\left(2\right)\)
Từ (1) và (2) => \(\widehat{BMN}=\widehat{MBN}\Leftrightarrow\widehat{xBC}=\widehat{BMN}\)
b) Vì Ny // Bx => \(\hept{\begin{cases}\widehat{BMN}=\widehat{MNy}\left(so-le-trong\right)\\\widehat{MBN}=\widehat{yNC}\left(đồng-vị\right)\end{cases}}\)
Mà theo phần a), \(\widehat{BMN}=\widehat{MBN}\Rightarrow\widehat{MNy}=\widehat{yNC}\)
Vậy Ny là tia phân giác của \(\widehat{MNC}\)
~~~ Chắc chắn đúng nha cậu :3 Tiếc gì 1 tk cho tớ nào?
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C N M y x 1 2 1
a) Vì AM là phân giác của góc BAM
=> Góc A1 = góc A2
Mà góc A1 = góc M1 ( do AB // MN )
=> Góc A2 = góc M1 ( điều phải c/m )
b) Vì Bx là phân giác góc ABC => Góc NBM = 1/2 góc ABC
Vì My là p/g của góc NMC => Góc yMC = 1/2 góc NMC
Mà góc NMC = góc ABC ( do AB // MN )
=> Điều phải c/m
c) Bn tự làm nốt nha