Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
a,Xét ΔΔAMN có : AN=NM
⇒⇒góc NAM =góc NMA
mà góc NMA= góc MAB (vì MN song song với AB)
nên góc NAM =góc MAB hay MA là tia phân giác góc BAC
Xét ΔΔABC ta có:
AM là tia phân giác góc BAC và cũng là đường trung tuyến ứng với cạnh BC
⇒⇒ΔΔABC cân tại A
b, Theo câu a ta có :ΔΔABC cân tại A
⇒⇒góc ABC = góc NCM
Mà góc NMC = góc ABC
NÊN góc NMC= góc NCM
⇒⇒ ΔΔNMC cân tại N
⇒⇒MN=NC
mà NM=AN
Nên AN=NC hay BN là đường trung tuyến ứng với cạnh AC
Ta có: AM là đường trung tuyến ứng với cạnh BC
BN là đường trung tuyến ứng với cạnh AC
mà BN cắt AM tại O
Nên O là trọng tâm của tam giác ABC
A B C M N P I H O
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
Bạn cố gắng tự vẽ hình giùm mình nha...Nếu k vẽ được thì kêu mình 1 tiếng nhé!
a) Nối M với K.
Có MI // BC
=> Góc BMK = Góc MKI
Góc BKM = Góc IMK
(Cặp góc so le trong do đường thẳng MK cắt 2 đường thẳng song song MI và BC)
Xét Tam giác MBK và Tam giác IKM có:
Góc BMK = Góc MKI
Chung cạnh MK
Góc BKM = Góc IMK
=> Tam giác MBK = Tam giác IKM(g.c.g)
=> MB = IK
Mà MB = MA (M là trung điểm của AB)
=> IK = MA(đpcm)
Vậy...
b) Có: AB // IK
=> Góc AMI = Góc MIK (2 góc so le trong do đt MI cắt 2 đường thẳng song song AB và IK) (1)
=> Góc MAI = Góc KIC ( 2 góc đồng vị do đt AC cắt 2 đt song sonh AB và IK)
Có: MI // BC
=> Góc MIK = Góc IKC (2 góc so le trong do đt IK cắt 2 đt song song MI và BC) (2)
Từ (1) và (2) suy ra: Góc IKC = Góc AMI
Xét Tam giác AMI và Tam giác IKC có:
Góc IKC = Góc AMI
AM = IK
Góc MAI = Góc KIC
=> Tam giác AMI = Tam giác IKC
c) Có: Tam giác AMI = Tam giác IKC (câu b)
=> AI = IC (2 cạnh tương ứng)
Vậy...