Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B D C A H K E 1 2
a) Xét \(\Delta BED\)và \(\Delta BEC\)có:
BC=BD (giả thiết)
\(\widehat{B_1}=\widehat{B_2}\)( BE là phân giác góc B trong tam giác ABC)
BE chung
=> \(\Delta BED\)=\(\Delta BEC\)(c.g.c)
b) Vì \(\Delta BED\)=\(\Delta BEC\)( theo câu a)
=> DE=EC ( cạnh tương ứng bằng nhau) (1)
mà ta lại có: DK=KC ( K là trung điểm DC) (2)
và EK chung (3)
Từ (1) (2) (3) => \(\Delta EDK=\Delta ECK\)(c.c.c)
=>\(\widehat{DKE}=\widehat{CKE}\) ( góc tương ứng)
mà \(\widehat{DKE}+\widehat{CKE}=180^o\)
=> \(\widehat{DKE}=\widehat{CKE}=90^o\)hay \(EK\perp DC\)
c) Tương tự như trên ta chứng minh được \(\Delta DBK=\Delta CBK\)( c.c.c)
=> \(\widehat{DBK}=\widehat{CBK}\)
=> K thuộc tia phân giác góc B
=> B,E<, K thẳng hàng
d) Theo đề bài ta có: \(AH\perp DC\)và \(BK\perp DC\)
=> AH//BK
=> \(\widehat{DBK}=\widehat{DAH}\)
Để góc DAH=45 độ
=> \(\widehat{CBD}=2.\widehat{DBK}=2.\widehat{DAH}=2.45^o=90^o\)
Hay tam giác ABC vuông tại B
Hình bạn tự vẽ nha!
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
=> ABK = ADK (2 góc tương ứng).
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!
a) xét \(\Delta\)ABH và\(\Delta\)AHC có:AH chung. BH=HC.AB=AC=>bằng nhau ccc=>góc AHC =góc AHB
mà AHB + AHC =180 độ => góc AHB=AHC=90độ (đpcm)
b)ta thấy góc ABC+CBD=180độ;góc ACB+BCE=180độ=>góc CBD=BCE(kề bù vs 2 góc băng nhau)
xét \(\Delta\)DBC và\(\Delta\)BCE có :BD=CE,góc CBD=BCE,BC chung =>góc D= E,góc DCB=DBC=>góc DBK=ECK(vì góc DBC=ECB)
xét \(\Delta\)DBK và EKC có góc D=E,BD=CE,góc DBK=ECK=>bằng nhau gcg
ba ý đầu mị lm ntn này nek, coi đúng hông ha^^
a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung
=>ABD=ACE(ch-gn)
ý b bỏ ha, lm ý c
AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A
=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)
xét tam giác ABC cân tại A:
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và (2) => góc AED=EBC
mak hay góc mày ở vtris đồng vị nên ED//BC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bạn tự vẽ hình nhé mình giải thôi!
Giải:a)Xét △BED và △BEC:
Có : BD = BC (gt)
∠DBE=∠CBE (gt)
BE cạnh chung
⇒ △BED=△BEC(c-g-c)
Xét △DBI và △CBI:
Có BD=BC(gt)
∠DBI = ∠CBI(gt)
BI cạnh chung
⇒ △DBI =△CBI (c-g-c)
⇒ID =IC ( 2 cạnh tương ứng )
ukm xem lại xem có sai đề ko nào
hoc ngu nhu bo