Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D M M
a) Vì AM là phân giác của góc BAC
nên góc BAM = CAM
Xét ΔBAM và ΔCAM có:
AB = AC ( giả thiết )
Góc BAM = CAM ( chứng minh trên )
AM cạnh chung.
=> Δ BAM = ΔCAM ( c.g.c )
=> BM = CM ( 2 cạnh tương ứng )
mà M nằm giữa B và C
Do đó M là trung điểm của BC → ĐPCM.
b) Ta có: AB + BE = AE
AC + CF = AF
mà AB = AC ( đề bài ); AE = AF (đề bài)
=> BE = CF.
Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )
Lại có: Góc ABC + CBE = 180 độ (kề bù)
Góc ACB + BCF = 180 độ (kề bù)
=> ABC + CBE = ACB + BCF
=> Góc CBE = BCF.
Xét ΔBCE và ΔCBF có:
BE = CF ( chứng minh trên)
Góc CBE = BCF ( chứng minh trên)
BC cạnh chung ( theo hình vẽ)
=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.
c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM
Xét ΔMBE và ΔMCF có:
MB = MC ( chứng minh ở câu a )
Góc EBM = FCM ( chứng minh trên)
BE = FC ( chứng minh ở câu b)
=> ΔMBE = ΔMCF ( c.g.c )
=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.
d) Xét ΔEMN và ΔFMN có:
EM = FM ( chứng minh ở câu c )
EN = FN ( N là trung điểm EF )
MN chung.
=> ΔEMN = ΔFMN.
=> Góc ENM = FNM (2 góc tương ứng)
Suy ra MN là tia phân giác của góc ENF (1)
Có: góc BAM = CAM
Suy ra AM là tia phân giác của góc BAC (2)
Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.
Do đó A, M, N thẳng hàng → ĐPCM.
A B C M E F N
CM:a) Xét t/giác ABM và ACM
có: AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\) (gt)
AM : chung
=> t/giác ABM = t/giác ACM (c.g.c)
=> BM = CM (2 cạnh t/ứng)
=> M là trung điểm của BC
b) Ta có: AE + AC = EC
AF + AB = FB
mà AE = AF (gt); AB = AC (gt)
=> EC = FB
Xét t/giác BCE và t/giác CBF
có: BC : chung
\(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)
EC = FB (cmt)
=> t/giác BCE = t/giác CBF (c.g.c)
c) Xét t/giác BEM và t/giác CFM
có: EB = FC (vì t/giác BCE = t/giác CBF)
\(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)
BM = CM (cm câu a)
=> t/giác BEM = t/giác CFM (c.g.c)
=> ME = MF (2 cạnh t/ứng)
d) Xét t/giác AEN và t/giác AFN
có: AE = AF (gt)
EN = FN (gt)
AN : chung
=> t/giác AEN = t/giác AFN (c.c.c)
=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)
=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)
AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)
Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)
=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)
Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\)
hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)
=> A, M, N thẳng hàng
Hình ảnh chỉ mang tính chất minh họa thui nhé bn!!
a) Xét \(\Delta ABM\)và \(\Delta ACM\)có:
\(AB=AC\)( do tam giác ABC cân tại A)
\(\widehat{ABM}=\widehat{ACM}\)( do tam giác ABC cân tại A)
\(BM=MC\)( m là trung điểm của BC)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\)( 2 góc kề bù)
Mà \(\widehat{AMB}=\widehat{AMC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
\(\Rightarrow2\widehat{AMB}=180^o\)
\(\Rightarrow\widehat{AMB}=90^o\)
hay nói cách khác \(AM\perp BC\)
c) Ta có: \(\widehat{BAM}=\widehat{MAC}\)( 2 góc tương ứng của tam giác ABM và tam giác ACM)
và AM nằm giữa góc BAC
\(\Rightarrow AM\)là tia phân giác của \(\widehat{BAC}\)
d) Xét \(\Delta AMB\)và \(\Delta DMC\)có:
\(AM=MD\)(gt)
\(\widehat{AMB}=\widehat{DMC}\)( 2 góc đối đỉnh)
\(BM=MC\)( M là trung điểm BC)
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right)\)
\(\Rightarrow AB=CD\)( 2 cạnh tương ứng) (1)
mà \(AB=AC\)( tam giác ABC cân tại A) (2)
Từ (1) và (2) \(\Rightarrow AC=CD\)
\(\Rightarrow\Delta ACD\)cân tại C
e) Xét \(\Delta ABC\)và \(\Delta CEA\)có:
\(AB=AC\)( tam giác ABC cân tại A)
\(\widehat{ACB}=\widehat{CAE}\)( 2 góc so le trong)
\(BC=AE\left(gt\right)\)
\(\Rightarrow\Delta ABC=\Delta CEA\left(c-g-c\right)\)
f) Gọi tia đối AE là AI
Ta có: \(\widehat{IAB}+\widehat{BAC}+\widehat{CAE}=180^O\)( I ; A; E thẳng hàng)
hay \(\widehat{MCD}+\widehat{ACE}+\widehat{ACB}=180^o\)
\(\Rightarrow D;C;E\)thẳng hàng
hok tốt!!
A B C E D I
Cm: Ta có : góc BAC + góc CAD = 1800 (kề bù)
=> góc CAD = 1800 - góc BAC = 1800 - 900 = 900 (1)
Và AD = AE (gt) (2)
Từ (1) và (2) suy ra t/giác AED là t/giác vuông cân tại A
b) Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc BAC = góc CAD = 900(cmt)
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (hai cạnh tương ứng)
c) Gọi giao điểm của BE và DC là I
tự làm
d) tự làm
a ) Do AM là trung tuyến => BM = CM
Xét \(\Delta ABM\)và \(\Delta DCM\)có :
BM = CM ( cm trên )
\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)
MA = MD ( gt )
nên \(\Delta ABM=\Delta DCM\)( c.g.c )
=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )
mà hai góc này lại ở vị trí so le trong => AB//CD
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm